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ABSTRACT

Cost-volume filtering is one of the most widely known tech-
niques to solve general multi-label problems, however it is
problematically inefficient when the label space size is ex-
tremely large. This paper presents a coarse-to-fine strategy
of the cost-volume filtering that handles efficiently and ac-
curately multi-label problems with a large label space size.
Based upon the observation that true labels at the same im-
age coordinate of different scales are highly correlated, we
truncate unimportant labels for the cost-volume filtering by
leveraging the labeling output of lower scales. Experimen-
tal results show that our algorithm achieves much higher effi-
ciency than the original cost-volume filtering while enjoying
the comparable accuracy to it.

Index Terms— cost-volume filtering, Markov random
fields, label selection, coarse-to-fine

1. INTRODUCTION

Many low-level computer vision problems (e.g., stereo match-
ing and optical flow estimation) are formulated as multi-label
problems where discrete labels (e.g., disparity and motion
vector) are assigned to pixels. There are generally two ap-
proaches to solve these problems: global and local. The
former models a labeling problem as a Markov random field
(MRF) where global optimization techniques [1, 2, 3] are
used to minimize the energy function. While effective, solv-
ing a large optimization problem makes the inference in-
tractable when the image size is high or the label space is
large. More recently, Rhemann et al. [4] presented a local ap-
proach called cost volume filtering (CVF), which efficiently
solves general multi-label problems. The trick is that CVF
substitutes the fast local filtering of label costs for the global
smoothing in the MRF optimization. Since CVF is easy to im-
plement yet provides high-quality results, it has been widely
used to solve various multi-label problems [5, 6, 7, 8, 9].
However, a limitation of CVF is that it does not scale to the
extremely large label set (e.g., sub-pixel stereo matching and
upsampling of the 16-bit depth map from the kinect sensor).

To tackle this difficulty, Lu et al. [10] have recently pro-
posed PatchMatch Filter (PMF) algorithm which performs
CVF iteratively on local superpixels with compact label sub-
sets instead of performing on the entire image coordinate.

Since the average size of local label subsets is generally much
smaller than the size of the entire label subset, PMF is usu-
ally much more efficient than CVF while keeping its accu-
racy. Nevertheless, PMF relies on the complex patch-match
based global optimization to estimate a label subset for each
superpixel whose computational complexity increases in re-
sponse to the number of superpixels, therefore less effective
when an image is divided into many superpixels.

This paper presents an alternative coarse-to-fine strategy
for efficiently estimating compact label subsets to solve the
label space problem of the cost-volume filtering. Based upon
the observation that true labels at the same image coordinate
of different scales are highly correlated, we propose to lever-
age the labeling output of the lower scale for estimating lo-
cal label subsets of the higher scale. Starting from the very
low-resolution image, we iteratively truncate unimportant la-
bels of each higher scale and finally, we assign compact and
approximately optimal label subsets to local regions of the
original scale. The proposed framework benefits from sim-
ple, efficient coarse-to-fine strategy, which does not require
any global optimization like [10] and its computational com-
plexity is less affected by the number of local regions. Exten-
sive experiments in Sec. 3 show that our algorithm achieves
the higher efficiency than PMF and CVF while enjoying the
comparable or often superior accuracy to them.

2. COARSE-TO-FINE STRATEGY FOR EFFICIENT
COST VOLUME FILTERING

In this section, we present a coarse-to-fine strategy of the
cost-volume filtering (CVF) [4] for handling multi-label
problems with a large label space. Given a label set L =
{l0, · · · , lL−1}, the goal of a multi-label problem is to assign
a label li ∈ L to each pixel i , [xi, yi](i = 0, . . . ,M − 1) in
the image coordinate I which minimizes the label costs that
are encoded in the energy function [4].

2.1. Cost-volume Filtering

CVF [4] solves multi-label problems by three steps. First,
a 3-D cost volume C is constructed as a collection of the
cost for choosing label l at each pixel i which is based on
the data term in the energy function. Then each slice of the
cost volume is independently filtered by an edge preserving
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Fig. 1. A framework of proposed method.

filter [11, 12] which substitutes for the smoothness term in
the energy function. Finally, the label at pixel i is simply cho-
sen in a winner-take-all strategy. When O(1) edge preserving
filter (e.g., guided filter [11]) is used, the computational com-
plexity of filtering an entire cost volume is O(ML): M is the
number of pixels in I and L is the size of L, which leads to
the difficulty in handling an extremely large label space.

One possible strategy for handling a large label space
problem is to locally change the label space for reducing the
size of label space. Because the true label configuration is
generally smooth in space (e.g., disparities are smooth ex-
cept for object boundaries), the necessary label space for
performing CVF on a local region should be much smaller
than the entire label space. However, the problem is of course
we do not know a priori which labels are important for each
local region, and thus the estimation of local label subsets is
required [10].

2.2. Problem Statement

Here we present a simple but efficient label subset estima-
tion algorithm. Unlike Lu et al. [10], we do not rely on the
global optimization for estimating local label subsets instead
leveraging the coarse-to-fine framework. The overview of the
proposed method is illustrated in Fig. 1. Our algorithm con-
sists of mainly two steps (i) in-scale cost-volume filtering and
(ii) across-scale label propagation. An essential ingredient is
the latter step, where a local label subset is estimated from the
CVF output at its lower resolution. Since the computational
cost of CVF for a low-resolution image is less noticeable, we
perform CVF with a large label space at low-resolution and
then truncate unimportant labels using the output.

Let Ik(k = 0, . . . , n − 1) denote a cascade of images
of decreasing resolution ranging from the original scale (i.e.,
Ik+1 = Ik↓s where ↓ is a down-scaling operator with a scale
factor s ∈ (0, 1))1 and Lk denote a set of all possible labels
at k-th scale which is given by L. Then we divide I0 (= I)
into m non-overlapping local regions S0

j and then partition
Ik(k ≥ 1) into local regions Sk

j (j = 1, . . . ,m− 1) such that

1We used “buildPyramid” function in OpenCV to downsample images.

Sk+1
j = Sk

j ↓s.2 In addition, we represent a label subset for Sk
j

as Lk
j and its size as Lk

j . The entire computational complexity
of CVF from the lowest scale (k = n) to the original scale
(k = 0) is described as

O(

n∑
k=0

m∑
j=0

Mk
j L

k
j ), (1)

where Mk
j is a number of pixels in Sk

j (i.e., Mk
j = s2kM0

j ).
Therefore, our goal is to estimate compact label subsets Lk

j

such that
∑n

k=0

∑m
j=0M

k
j L

k
j � ML while keeping the ac-

curacy of CVF.

2.3. Across-scale Label Propagation

In this section, we present an algorithm to estimate compact
label subsets (Lk

j ) which sufficiently reduce Eq. (1) with-
out truncating important labels. Our algorithm is begun by
the coarsest scale (i.e., k = n − 1). At this scale, we set
∀jLn−1

j ← Ln−1 and simply perform CVF [4] to acquire
the filtered cost volume Cn−1 at (n − 1)-th scale3. Note
that though we use a complete label set, the computational
complexity of CVF at this scale is O(s2(n−1)ML), which
is generally neglectable (e.g., if we set s by 0.5 and n by 4,
O(s2(n−1)ML) ≈ O(10−2 ×ML)). Then we initialize the
label subset at the higher resolution (L̃n−2

j ) by merging labels
which have the smallest cost values in Cn−1 at correspond-
ing local regions Sn−1

j . Strictly speaking, the initialization
is represented as

L̃n−2
j =

⋃
i∈Sn−1

j

f(li), li = arg min
l

Cn−1(i, l), (2)

where Cn−1(p, q) is a value of the cost volume at (n− 1)-th
scale with regard to the position p and the label q, and f is a
projection function which normalizes the label space if nec-
essary. The projection function is generally represented as a
constant scale factor giving f = s−1. For instance, a disparity
l at the k-th scale corresponds to s−1l at the (k − 1)-th scale
in the stereo matching problem4. The initialization method
based on the across-scale label propagation is motivated by
a reasonable observation that true labels at the same image
coordinate of different scales are highly correlated, especially
they are very close when the difference of scales is small.

While the initial estimation L̃n−2
j is a good approximation

of the optimal label subset Ln−2
j , the problem is that L̃n−2

j

2S0
j can be generated in various ways e.g., rectangular regular grids or

super-pixels [13] as shown in Sec. 3.
3When local regions are not rectangular (e.g., superpixels with varying

shapes), we perform the edge-aware filter on the bounding-box containing
each region in the same manner with [10].

4There are some cases where the label space does not need to be normal-
ized since the scale of a label does not depend on the image coordinate. Some
examples are depth-map upsampling [9] and image segmentation [8].



does not consist of labels that are not included in f(Ln−1
j ),

which results in the aliasing artifacts when the intermediate
labels of Ln−1

j should be included in Ln−2
j (artifacts be-

come more problematic as the scale difference increases).
In addition, filtered cost volume Cn−1 often contains nu-
merical errors due to occlusion boundaries or insufficient
energy modeling. We overcome these difficulties by two
strategies. First, we downsample images with relatively large
scale factor (e.g., s ≥ 0.5), so that the scale difference be-
tween two layers becomes sufficiently small. Second, we
complete the initial label subset by adding the supporting
labels within ±1/(2s). We should note that our algorithm
supports floating labels (e.g., sub-pixel disparity values). For
instance, if the scale factor is 0.5 and the disparity unit is
0.5, the initial estimation L̃n−2

j = {2, 5} is extended as
Ln−2
j = {1, 1.5, 2, 2.5, 3, 4, 4.5, 5, 5.5, 6}. Once a compact

label subset Ln−2
j has been constructed, the target layer is

shifted to the higher scale (i.e., k ← n − 2). In the similar
manner with the coarsest scale, CVF is performed on Sn−2

j

with regard to Ln−2
j . Cost-volume filtering with respect to

Lk and the estimation of Lk−1 from Ck are iterated n − 1
times until L0

j is acquired Then the final label at each pixel
in S0

j is selected by a simple winner-takes-all strategy in the
same manner with CVF [4].

3. RESULTS

Experiments were carried out to evaluate the performance
of proposed method using the Middlebury stereo matching
benchmark [14]. In stereo matching, the label l corresponds
to the integer disparity between a pixel i in the target image
I and the correspondence in the reference image I ′ shifted
by the disparity. The cost function is chosen in the same
manner with [4] where model parameters of α, τ1 and τ2 are
set by 0.89, 0.0027, 0.0078 respectively5. We divide eight
test image pairs in Middlebury stereo datasets [14] into two
categories with their size: small and large. The small cate-
gory includes cones (450× 375), teddy (450× 375), tsukuba
(384 × 288) and venus (434 × 383). And the large category
includes art (1390 × 1110), books (1390 × 1110), moebius
(1390 × 1110) and reindeer (1342 × 1110). The label space
size L is set by 60 in the small datasets and 240 in the large
datasets. All experiments were performed on Intel Core i7-
2600 (3.4GHz, single thread) machine with 16 GB of RAM
and were implemented in C++. Like the original work of
CVF [4], we use the guided image filter [11] to smooth the
cost volume (the radius of the filter is fixed by 9).

3.1. Evaluation of Label Selection

We begin by evaluating the efficiency of our coarse-to-fine
strategy comparing with CVF [4]. Here we apply our method

5Parameters are given by authors of [4]
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Fig. 2. Evaluation of the computation time. The results of
eight Middlebury stereo datasets are averaged. Post indicates
the entire computational time after the weighted median fil-
tering for the final disparity-map refinement.

(n = 5, s = 0.5,m = 30) and CVF [4] to both small and
large datasets and results are averaged as shown in Fig. 2. We
observe that our coarse-to-fine strategy entirely takes much
less time than CVF [4]. As we expected, the computational
time for small scales (e.g., 1/16, 1/8, 1/4×) is neglectably
smaller than that of the original resolution (1/1×).

However, one important question arises, “Estimated label
subsets of the original scale are really correct?” which di-
rectly addresses the accuracy of the final label selection. To
answer this question, we define two metrics for measuring the
correctness of the final label subset as

P (j) =
|L0

j ∩ Lj |
|L0

j |
, R(j) =

|L0
j ∩ Lj |
|Lj |

, (3)

where Lj is the subset of ground truth labels at the origi-
nal scale (i.e., a collection of ground truth disparity values
emerged in the j-th region) and we remind that L0

j is the sub-
set of estimated labels at the original scale. These two met-
rics evaluate the estimated label subset in two different as-
pects: P (j) ∈ [0, 1] measures the the precision of L0

j which
implies how correctly unimportant labels are removed, and
R(j) ∈ [0, 1] measures the recall of L0

j which implies how
correctly important labels are maintained. Note that the ideal
situation of course occurs when ∀j L0

j = Lj .

Using these metrics, we evaluate our method with vary-
ing scale factor s and number of layers n using only small
datasets as shown in Table 1 and Table 2. Here results are
averaged over all datasets in this category. In summary, we
observe that our algorithm successfully maintains more than
80% of ground truth labels and truncate more than 50% un-
necessary labels in average while the original label subset
contains 90% of unnecessary labels. We also observe that
as expected, the improvement of the precision is generally
limited when the number of layers is too small or the scale
differences between two layers are too large. Therefore in the
following experiments, we fix n by 4 and s by 0.5.



Table 1. Evaluation of the label subset estimation with fixed
lowest scale and varying scale differences.

Transition of scale 
Ave. 

Precision 

Ave. 

Recall 

1/16→1/8→1/4→1/2→1/1(s=0.5,n=5) 0.58 0.89 

1/16→1/4→1/1(s=0.25,n=3) 0.48 0.89 

1/16→1/1(s=0.0625,n=2) 0.23 0.93 

1/1(CVF[4]) 0.13 1.00 

Table 2. Evaluation of the label subset estimation with fixed
scale difference and varying number of layers.

Transition of scale 
Ave. 

Precision 

Ave. 

Recall 

1/16→1/8→1/4→1/2→1/1(s=0.5,n=5) 0.58 0.89 

1/8→1/4→1/2→1/1(s=0.5,n=4) 0.58 0.91 

1/4→1/2→1/1(s=0.5,n=3) 0.57 0.90 

1/2→1/1(s=0.5,n=2) 0.49 0.92 

1/1(CVF[4]) 0.13 1.00 

3.2. Comparison with PatchMatch Filter

Here we evaluate the performance of our method by a nu-
merical comparison with PatchMatch filter (PMF) [10] using
both small and large datasets in Middlebury stereo bench-
mark [14]. For a fair comparison, our method and PMF are
performed with same superpixels clustered by SLIC [13],
the cost function, and the post-processing based on left-right
cross-checking and median-filtering (see details in [4])6. We
also evaluate the performance of our method based on the reg-
ular image grid with varying block size. Note that the number
of local regions is in inverse proportion to the block size.
The results are displayed in Table 3 and Table 4. Here the
percentage disparity errors (threshold is set by one for small,
and one and four for large) are averaged over all images with
the same category. We observe that while the accuracy of our
method, PMF [10] and CVF [4] are almost same, our method
is most efficient method of all for both categories. Especially
as for large datasets, our method achieves 6× faster perfor-
mance than CVF [4] while keeping (or even better) accuracy.
We also observe that our method works when the number of
local regions is large (e.g., superpixels with K = 200, 500)
or when the image is divided into local regions as a simple
image grid. That is because unlike PMF [10], we do not
consider any spatial smoothness of label subsets within the
scale, rather consider the cross-scale smoothness of the local
label subset which is independent of the spatial coherence.

Finally, we illustrate the estimated disparity maps of
Teddy dataset in Fig. 3. We observe that our method succ-
ceeds in estimating smoother and more reasonable disparity
maps than CVF and PMF in this condition.

6Post-processing is performed on our method only in the original resolu-
tion.

Table 3. Comparison with PMF using small datasets.

Method 
Time[s] Err. %: thre. = 1.0 

nonocc all disc 

CVF[4] 35.38 3.30 6.17 9.74 

PMF[10] (K=50) 23.43 3.19 5.97 9.56 

PMF[10] (K=100) 28.97 3.23 6.03 9.32 

PMF[10] (K=200) 43.14 3.27 6.04 9.36 

PMF[10] (K=500) 73.21 3.30 6.08 9.31 

Ours (Superpixels, K=50) 15.98 3.51 6.31 10.8 

Ours (Superpixels, K=100) 16.56 3.46 6.23 10.7 

Ours (Superpixels, K=200) 18.48 3.69 6.48 11.3 

Ours (Superpixels, K=500) 23.55 4.15 7.03 12.2 

Ours (Grid, 150x150) 17.67 3.11 5.98 10.1 

Ours (Grid, 75x75) 12.47 3.22 6.02 10.4 

Table 4. Comparison with PMF using large datasets.

Method 

Time[s] Err. % (all) 

  

Err. 

thre.=1 

Err. 

thre.=4 

CVF[4] 1413 21.5 14.8 

PMF[10] (K=50) 266 22.7 15.6 

PMF[10] (K=100) 322 22.5 15.5 

PMF[10] (K=200) 484 22.5 15.6 

PMF[10] (K=500) 802 23.3 16.2 

Ours (Superpixels, K=50) 269 22.5 15.3 

Ours (Superpixels, K=100) 249 23.0 15.7 

Ours (Superpixels, K=200) 262 23.6 16.0 

Ours (Superpixels, K=500) 304 24.5 17.2 

Ours (Grid, 600x600) 1186 21.1 14.4 

Ours (Grid, 300x300) 796 20.5 13.4 

Ours (Grid, 150x150) 371 21.6 14.4 

Ours (Grid, 75x75) 246 25.2 17.6 

Ours (Grid, 

150×150) 

Ground Truth 

CVF 

PMF(Superpixels,  

K=500) 

Ours (Grid, 150×150) 

Fig. 3. Qualitative comparison with regard to estimated dis-
parity maps of Teddy dataset.

4. CONCLUSION

In this paper, we have proposed a coarse-to-fine strategy to
reduce the large label space for the efficient cost volume fil-
tering. Our proposed method has demonstrated the highest
efficiency, while keeping the accuracy in stereo matching. In
future work, we will apply our method to other applications
of discrete labeling problems which is hard to solve for the
original cost volume filtering because of the huge label space.
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