
Supplementary Material:
Universal Photometric Stereo Network

using Global Lighting Contexts
Appendix A. Implementation Details

Architecture details: In the main paper, an overview of our
universal photometric stereo network was given but some
important details were omitted due to the space limit. In
this section, we detail the “basic + pre-fusion” configura-
tion of our universal photometric stereo network. It should
be noted that the hyper parameters in our architecture are
all selected empirically, so it is quite possible that there are
parameters that will give better performance.

The image-wise feature extraction network (i.e. Swin-
S variant of SwinTransformer [10]) and subsequent multi-
scale feature fusion with the feature pyramid network (i.e.
UPerNet [13]) in our encoder were implemented on MM-
Segmentation [2]. The updates from the original codes are
mainly two. First, we input a mask image in addition to an
RGB image. Second, we modified the original mlp-based
patch embedding (i.e., local information embedding during
the reduction of the image resolution to 1/4 of the canonical
resolution) to the CNN-based one with five convolutional
layers to capture the local shading variations. The num-
ber of different scales was four; hence, given the canon-
ical resolution of 256×256, sizes of the multi-scale fea-
ture maps were 64×64×96, 32×32×192, 16×16×384 and
8×8×768, which were fused to 64×64×256 global lighting
contexts.

The feature communication in our encoder and aggre-
gation in our decoder were pixelwisely applied to feature
vectors under different lighting conditions in similar to our
previous work [8]. As illustrated in Fig. 1, the feature com-
munication step built upon a single Transformer layer where
input feature vectors were firstly projected to query, key and
value vectors whose dimensions were same with the input
ones. They were then passed to a multi-head self-attention
(the number of heads is 8) and a multi-layer perceptron
(MLP) with the pre-layer normalization [14] and dropout
(p = 0.1). Though the MLP doubled the original feature di-
mension, the feature dimension and number of feature vec-
tors in a set did not change between the input and output of
the feature communication step.

The feature aggregation step input q sets of vectors
cat{I(x),G(S(x))}{1...q} ∈ Rq×(256+3) where each vec-
tor was composed of raw pixel values and the interpolated
global lighting context. Then the input set was passed to
three Transformer layers and a PMA [9] where the number
of elements in a set was shrunk from q to one. The surface
normal predictor was a MLP with one hidden layer whose
feature dimension shrank as 384 → 192 → 3 and the norm
of the output vector was normalized to be a unit surface nor-
mal vector at the location.

Competitor details: It should be noted again that all the al-
gorithms (ours, GCNet [6], MPM [11] and Variational [7])
took the object mask as input. To ensure a fair compari-
son, we applied the same center crop to input images, which
means that the input of all the algorithms were exactly same
(i.e., crops of images and an object mask). For a fair evalua-
tion, we used the authors’ official implementations for com-
petitors. Since there is a binary ambiguity left in the surface
normal recovered by MPM (i.e. signs of x, y, z directions),
we manually solved it so as to be quantitatively optimal in
the quantitative experiments and most visually plausible in
the qualitative evaluation. As for GCNet, we used the pre-
trained model provided by authors since our training dataset
was not available for their model due to the fact that GCNet
requires the supervision of directional lightings. In addi-
tion, we found that GCNet [5] didn’t work at all for our raw
test images without the proper image normalization (The
data normalization is also important for the DiLiGenT [12]
evaluation), therefore we empirically performed the linear
image normalization dividing each image by 0.1 · max(I)
so that the pixel values in each image ranged between 0 and
0.1. Unlike others, Variational [7] is actually an algorithm
for perspective images and it requires the focal length of
images as input. So we approximated test images as per-
spective ones by using the unit focal length (i.e. f = 256
for 256×256 image) for our PS-Wild test dataset and us-
ing ones from Exif-Tags in the real evaluation. We note
that empirically, the small differences of the focal length
didn’t show any significant difference in results. Unfortu-
nately, MPM [11] is a quite computationally expensive al-
gorithm whose computational complexity is O(h2w2) and
we confirmed that it didn’t work for images whose sizes
were bigger than 512×512. For a fair comparison, we used
256×256 crops in both quantitative and qualitative compar-
ison because we confirmed that MAE didn’t significantly
depend on the input image resolution.

Appendix B. PS-Wild Dataset and Training Details

Renderer details: PS-Wild was rendered with the Cycles
engine in Blender2.93 [1]. For a full global illumination
rendering using a path tracing integrator with direct light
sampling, we used 256 rendering samples with 10 max ray
bounces. Each BRDF material in both training and test
3-D assets consisted of 2-D texture maps of the base color,
roughness, metalness which were directly fed to the diffuse
and specular BRDFs of the Cycles engine (i.e. we used
Principled BSDF shader [4]). In Fig. 2, we illustrated some
examples of rendered images and 3-D assets in our PS-Wild
training dataset. Each row corresponds to one object from
10,099 objects in total. As for the test dataset, we illustrate
the entire 50 objects and corresponding results in Fig.3-52.
As mentioned, our textures are classified into three types of
materials (six as categorized in ShareTextures [3]); diffuse
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Figure 1. Implementation details of the feature communication and aggregation steps. Our feature communication step is composed of a
single Transformer layer and our feature aggregation step is composed of three Transformer layers followed by PMA layer.

(Fabric, Concrete), specular (Wood, Floor, Ground) and
metallic (Metal). The rendering pipeline was exactly same
as one for the training dataset.

Training details: We augmented the dataset during
the training to bring more variations in training examples.
Concretely, we randomly flipped images horizontally or
vertically, and randomly rotated images by 90 degrees. In
addition, we also performed the random color swapping
for each image since our task didn’t include the surface
reflectance recovery. We used p = 0.5 for all the augmen-
tations.

Appendix C. Complete Quantitative Comparison

We illustrated the complete results on our PS-Wild test
datasets in Fig.3-52. As described in the main paper, we
observed that GCNet worked well for images under the di-
rectional lighting, however had problems in handling more
complicated lighting conditions. We also observed that
GCNet basically produced more blurry output than other
methods due to the image-wise operations such as con-
volutional neural networks. MPM and Variational could
produce sharper results but had problems in handling non-
Lambertian, non-convex objects.
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Figure 2. Examples of images and BRDF parameter maps in our PS-Wild training dataset (metallic map is omitted).
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Figure 3. Results on object ID 1 (accessory, dark-wooden-parquet [Wood]). MAEs (in degrees) are shown next to the name of the method.



Figure 4. Results on object ID 2 (accessory, fabric-85 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 5. Results on object ID 3 (apple, fabric-86 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 6. Results on object ID 4 (apple, square-pattern-parquet-1 [Wood]). MAEs (in degrees) are shown next to the name of the method.



Figure 7. Results on object ID 5 (ball, fabric-95 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 8. Results on object ID 6 (ball, wood-parquet-17 [Wood]). MAEs (in degrees) are shown next to the name of the method.



Figure 9. Results on object ID 7 (buddha, fabric-94 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 10. Results on object ID 8 (buddha, wood-parquet-57 [Wood]). MAEs (in degrees) are shown next to the name of the method.



Figure 11. Results on object ID 9 (bunnydoll, fabric-96 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 12. Results on object ID 10 (bunnydoll, wood-parquet-59 [Wood]). MAEs (in degrees) are shown next to the name of the method.



Figure 13. Results on object ID 11 (chair, brown-tiling [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 14. Results on object ID 12 (chair, wood-parquet-59 [Concrete]). MAEs (in degrees) are shown next to the name of the method.



Figure 15. Results on object ID 13 (chococup, carpet-floor [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 16. Results on object ID 14 (chococup, concrete-49 [Concrete]). MAEs (in degrees) are shown next to the name of the method.



Figure 17. Results on object ID 15 (cloth-chair, concrete-tiling-6 [Concrete]). MAEs (in degrees) are shown next to the name of the
method.



Figure 18. Results on object ID 16 (cloth-chair, copper-red-stone [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 19. Results on object ID 17 (dolphin, explosion-blue-1 [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 20. Results on object ID 18 (dolphin, seamless-concrete [Concrete]). MAEs (in degrees) are shown next to the name of the method.



Figure 21. Results on object ID 19 (ear, tiling-42 [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 22. Results on object ID 20 (ear, white-concrete-46 [Concrete]). MAEs (in degrees) are shown next to the name of the method.



Figure 23. Results on object ID 21 (eden, fabric-85 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 24. Results on object ID 22 (eden, ground-12 [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 25. Results on object ID 23 (furniture-leg, fabric-86 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 26. Results on object ID 24 (furniture-leg, sand-stone [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 27. Results on object ID 25 (kitty, fabric-95 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 28. Results on object ID 26 (kitty, snow-ground-2 [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 29. Results on object ID 27 (little-doll, fabric-94 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 30. Results on object ID 28 (little-doll, pebble-stone [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 31. Results on object ID 29 (mother, fabric-96 [Fabric]). MAEs (in degrees) are shown next to the name of the method.



Figure 32. Results on object ID 30 (mother, pebble-stone [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 33. Results on object ID 31 (pig, black-metal-2 [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 34. Results on object ID 32 (pig, brown-tiling [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 35. Results on object ID 33 (shelby, carpet-floor [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 36. Results on object ID 34 (shelby, metal-frame-3 [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 37. Results on object ID 35 (silane, copper-red-stone [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 38. Results on object ID 36 (silane, old-bronze [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 39. Results on object ID 37 (snowmobile, explosion-blue [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 40. Results on object ID 38 (snowmobile, old-copper [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 41. Results on object ID 39 (statue-2, metal-plate [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 42. Results on object ID 40 (statue-2, tiling-42 [Floor]). MAEs (in degrees) are shown next to the name of the method.



Figure 43. Results on object ID 41 (stone, black-metal-2 [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 44. Results on object ID 42 (stone, ground-12 [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 45. Results on object ID 43 (toilet, metal-frame [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 46. Results on object ID 44 (toilet, sand-stone [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 47. Results on object ID 45 (uncle, old-bronze [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 48. Results on object ID 46 (uncle, snow-ground [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 49. Results on object ID 47 (versace, old-copper [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 50. Results on object ID 48 (versace, pebble-stone [Ground]). MAEs (in degrees) are shown next to the name of the method.



Figure 51. Results on object ID 49 (wolf, metal-plate [Metal]). MAEs (in degrees) are shown next to the name of the method.



Figure 52. Results on object ID 50 (wolf, pebble-stone [Ground]). MAEs (in degrees) are shown next to the name of the method.


