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Abstract

This paper presents a robust photometric stereo method
that effectively compensates for various non-Lambertian
corruptions such as specularities, shadows, and image
noise. We construct a constrained sparse regression prob-
lem that enforces both Lambertian, rank-3 structure and
sparse, additive corruptions. A solution method is derived
using a hierarchical Bayesian approximation to accurately
estimate the surface normals while simultaneously separat-
ing the non-Lambertian corruptions. Extensive evaluations
are performed that show state-of-the-art performance using
both synthetic and real-world images.

1. Introduction
Photometric stereo recovers surface normals of a scene

from appearance variations under different lightings. The
early work of Woodham [15] has shown that when a Lam-
bertian surface is illuminated by at least three known light-
ing directions, the surface orientation can be uniquely deter-
mined from the resulting appearance variations using least-
squares. In reality, however, the estimation may be dis-
rupted by common non-Lambertian effects such as spec-
ular highlights, shadows, and image noise. Photometric
stereo approaches to dealing with these problems are cat-
egorized into two classes: one uses a more sophisticated
reflectance model than a simple Lambertian model to ac-
count for non-Lambertian effects [10, 6, 4, 1], and the other
uses statistical approaches to eliminate the non-Lambertian
effects [9, 17, 8, 11, 16]. Our work is more related to the
latter class of robust approaches.

The robust approaches generally attempt to eliminate
non-Lambertian observations by treating them as outliers,
e.g., a RANSAC (random sample consensus) scheme [9, 5],
a Big-M approach [17], median filtering [8], and a graph-
based approach [11]. While effective, these methods often
require extensive computations to derive a stable solution.
Our work is motivated by an alternative photometric stereo
formulation by Wu et al. [16] that explicitly accounts for

∗This work was done while the first author was visiting Microsoft Re-
search Asia.

sparse corruptions using R-PCA (Robust Principal Com-
ponent Analysis). However, unlike Wu et al.’s approach
where rank minimization is employed, our method explic-
itly uses a rank-3 Lambertian constraint and solves the prob-
lem using efficient sparse regression tools. This eliminates
the need for specifying a shadow mask, which was needed
in [16], and achieves significantly more accurate estimation
of surface normals.

The primary contributions of this work are twofold.
First, we present a practical photometric stereo method de-
signed for highly corrupted observations. We cast the prob-
lem of photometric stereo as a well-constrained problem of
sparse regression. By introducing a sparsity penalty that
accounts for non-Lambertian effects, our method uniquely
decomposes an observation matrix of stacked images un-
der different lighting conditions into a Lambertian, rank-3
component and a sparse error component without having
to explicitly minimize rank as in previous methods. Sec-
ondly, we perform analytical and empirical studies of com-
putational aspects of sparse regression-based photometric
stereo. Namely, we assess two different deterministic algo-
rithms to solve the photometric stereo problem, a convex
`1-norm based relaxation [2], and a hierarchical Bayesian
model derived from a SBL (Sparse Bayesian Learning)
framework [12, 14]. Our detailed discussion and exten-
sive experiments show that SBL has various advantages
over the `1-norm-based relaxation relevant to photometric
stereo. Furthermore, we show that our method does not re-
quire careful tuning of parameters.

2. Photometric stereo via sparse regression

In this section, we formulate the estimation of surface
normals using photometric stereo as a particular sparse lin-
ear inverse problem. Henceforth we rely the following as-
sumptions:
(1) The relative position between the camera and the object
is fixed across all images.
(2) The object is illuminated by point light sources at infin-
ity whose positions are known.
(3) The camera view is orthographic and the sensor re-
sponse function is linear.
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Figure 1. Illustration of our approach. Our method simultaneously recovers both surface normals and corruptions as the solution of a
well-constrained problem of sparse regression which enforces both Lambertian rank-3 constraint and sparsity of corruptions.

2.1. Lambertian image formation model

Woodham et al. [15] revealed that the intensity I of a
point in a Lambertian scene under a lighting direction l ∈
R3 is expressed as follow,

I = ρ nT l, (1)

where ρ ∈ R is the diffuse albedo, andn ∈ R3 is the surface
normal at the point. Given n images with m pixels, we
define an observation matrix by aligning each image as a
vector:

O , [vec(I1)| . . . |vec(In)] ∈ Rm×n, (2)

where vec(Ik) , [Ik(1), . . . , Ik(m)]T for k = 1, . . . , n,
and Ik(j) = ρj n

T
j lk.

Therefore, the observations in a Lambertian scene can be
expressed via the rank-3 expression

O = NTL, (3)

where N = [ρ1n1 | . . . | ρmnm] ∈ R3×m and L =
[l1 | . . . | ln] ∈ R3×n.

2.2. Non-Lambertian effects as sparse errors

In real scenes, various effects beyond the Lambertian
formulation are observed, e.g., specularities, shadows, im-
age noise and so on. We can interpret them as additive cor-
ruptions E ∈ Rm×n applied to an otherwise ideal Lamber-
tian scene leading to the image formation model as [16]

O = NTL+ E. (4)

Given observed images O and lighting directions L, our
goal is to recover surface normals N as a part of the Lam-
bertian diffusive component NTL in the presence of non-
Lambertian corruptions E. However, this is an under-
constrained problem since the number of unknowns ex-
ceeds the number of linear equations. While most pre-
vious methods recover surface normals from the Lamber-
tian component purified by traditional outlier removal tech-
niques [9, 17, 8] , we try to recover N without explicitly
removing corruptions in a separate step. The overview of

the proposed method is illustrated in Fig. 1. An essential
ingredient is a sparsity penalty applied to E, whose mini-
mization disambiguates the infinity of feasible solutions to
Eq. (4). This penalty quantifies the reasonable observation
that non-Lambertian effects emerge primarily in limited ar-
eas of each image. For example, specularities surround
the spot where the surface normal is oriented halfway be-
tween lighting and viewing directions, while shadows are
created only when LTN ≤ 0 (attached shadow) or when a
non-convex surface blocks the light (cast shadow). Strictly
speaking, we assume that the optimal feasible solution to
Eq. (4) produces a sparse error matrix. Reflecting this as-
sumption, our estimation problem can be formulated as

min
N,E
‖E‖0 s.t. O = NTL+ E. (5)

Here, ‖ · ‖0 is an `0-norm penalty, which counts the num-
ber of non-zero entries in the matrix. To reiterate, Eq. (5)
builds on the assumption that images are captured under
known lighting conditions and any non-Lambertian corrup-
tions have sparse structure. If these assumptions are not true
(e.g., because of imperfect lighting calibration, non-sparse
specularities, etc.), then the hard constraint in Eq. (5) is no
longer appropriate. To compensate for more diffuse mod-
eling errors, we relax the hard constraint via an additional
model mismatch penalty giving

min
N,E
‖O −NTL− E‖22 + λ‖E‖0, (6)

where λ is a nonnegative trade off parameter balancing data
fit with sparsity. Note that in the limit as λ → 0, the two
problems are equivalent (the limit must be taken outside of
the minimization). Since Eq. (6) decouples, we can con-
sider instead an equivalent series of separate, pixel-wise op-
timizations problems of the canonical form

min
x,e
‖y −Ax− e‖22 + λ‖e‖0 . (7)

where the column vector y denotes an arbitrary transposed
row of O, A , LT , x is the associated unknown normal
vector, and e is the sparse error component (we have omit-
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ted pixel-wise subscripts for simplicity). Eq. (7) entails a
difficult, combinatorial optimization problem that must be
efficiently solved at every pixel. Here we consider two al-
ternatives to brute force exhaustive search. First, in the ma-
chine learning and statistics literature, it is common to re-
place the discontinuous, non-convex `0 norm with the con-
vex surrogate `1 norm.1 In certain situations the resulting
estimate will closely match the solution to Eq. (5) and/or
Eq. (6); however, in the context of photometric stereo this
substitution may not always be adequate (see Section 2.4
for more details). Secondly, we can apply a simple hierar-
chical Bayesian approximation to estimate x while simulta-
neously accounting for e. This formulation, called SBL, is
described in detail next.

2.3. Recovery of normals and corruptions via SBL

SBL [12] assumes the standard Gaussian likelihood
function for the first-level, diffuse errors giving

p(y|x, e) = N (y;Ax+ e, λI). (8)

We next apply independent, zero-mean Gaussian prior dis-
tributions on both x and e:

p(x) = N (x;0, σ2
xI), p(e) = N (e;0,Γ). (9)

σ2
x describes the prior variance of the unknown normal vec-

tor; it is fixed to a large value to convey our lack of a
priori certainty about x. Thus the prior on x will be rel-
atively uninformative (the value of σ2

x will be discussed
further below). In contrast, Γ , diag[γ] is a fully-
parameterized, diagonal matrix, where γ , [γ1, . . . , γk]T

is a non-negative vector of variances in one-to-one corre-
spondence with elements of e. A large variance γi indi-
cates that the corresponding ei is free to reflect the data,
compensating for non-Lambertian effects, while a small or
zero-valued variance implies that the associated error term
is constrained near zero. Combining the likelihood and
prior using Bayes’ rule leads to the posterior distribution
p(x, e|y) ∝ p(y|x, e)p(x)p(e). To estimate the normal
vectors x, we may further marginalize over e to give

p(x|y) =

∫
p(x, e|y)de = N (x;µ,Σ), (10)

with mean and covariance defined as

µ = ΣAT (Γ + λI)
−1
y, (11)

Σ =
[
σ−2
x I +AT (Γ + λI)

−1
A
]−1

.

We now have a closed-form estimator for x given by the
posterior mean. The only issue then is the values for the
unknown parameters Γ. Without prior knowledge as to the
locations of the sparse errors, the empirical Bayesian ap-
proach to learning Γ is to marginalize the full joint distri-
bution over all unobserved random variables, in this case x

1The `1 norm of a vector z is given by
∑

i |zi|, which constitutes the
tightest convex approximation to the `0 norm.

and e, and then maximize the resulting likelihood function
with respect to Γ [12]. Equivalently, we will minimize

L(Γ) , − log

∫
p(y|x, e)p(x)p(e)dxde

≡ log |Σy|+ yT Σ−1
y y (12)

with Σy , σ2
xAA

T + Γ + λI,

with respect to Γ. While L(Γ) is non-convex, the cost func-
tion from Eq. (12) is composed of two terms which are con-
cave with Γ and the element-wise inverse of Γ respectively.
Therefore, optimization can be accomplished by adopting a
majorization-minimization approach [13], which builds on
a basic convex analysis that any concave function can be
expressed as the minimum of a set of upper-bounding hy-
perplanes whose slopes are parameterized by auxiliary vari-
ables. Thus, we can re-express both terms of Eq. (12) as
a minimization over hyperplanes, where u are associated
with the first term, and z are associated with the second.
When we temporarily drop the respective minimizations,
we obtain a rigorous upper bound on the original cost func-
tion Eq. (12) parameterized by u and z. For fixed values
of z and u, there exists a closed form solution for Γ that
incorporates the tighter bound. Likewise, for a fixed value
of Γ, the auxiliary variables can be updated in closed form
to tighten the upper bound around the current Γ estimate.
While space precludes a detailed treatment, the resulting
update rules for the (k + 1)-th iteration are given by

γ
(k+1)
i →

(
z
(k)
i

)2
+ u

(k)
i ,∀i, Γ(k+1) = diag[γ(k+1)]

z(k+1) → Γ(k+1)
(
S(k+1)

)−1

y (13)

u(k+1) → diag
[
Γ(k+1) −

(
Γ(k+1)

)2 (
S(k+1)

)−1
]
,

where S(k+1) is computed via

S(k+1) = D −DA
[
σ−2
x I +ATDA

]−1
ATD

and D , (Γ(k+1) + λI)−1. (14)

These expressions only require O(n) computations and are
guaranteed to reduce L(Γ) until a fixed point Γ∗ is reached.
This value can then be plugged into Eq. (11) to estimate the
normal vector. We denote this point estimator as xsbl. If the
variances Γ∗ reflect the true profile of the sparse errors, then
xsbl will closely approximate the true surface normal. This
claim will be quantified more explicitly in the next section.

We have thus far omitted details regarding the choice of
λ and σ2

x. The former can be reasonably set according to
our prior expectations regarding the magnitudes of diffuse
modeling errors, but in practice there is considerable flex-
ibility here since some diffuse errors will be absorbed into
e. In contrast, we can realistically set σ2

x → ∞, which im-
plies zero precision or no prior information about the nor-
mal vectors and yet still leads to stable, convergent update
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rules. However we have observed that on certain problems
a smaller σ2

x can lead to a modest improvement in per-
formance, presumably because it has a regularizing effect
that improves the convergence path of the update rules from
Eq. (13) (perhaps counterintuitively, in certain situations it
does not alter the globally optimal solution as discussed be-
low). It is also possible to learn σ2

x using similar updates to
those used for Γ, but this introduces additional complexity
and does not improve performance.

2.4. Analytical evaluation

Previously we discussed two tractable methods for solv-
ing Eq. (7): a convex `1-norm-based relaxation and a hier-
archical Bayesian model called SBL. This section discusses
comparative theoretical properties of these approaches rel-
evant to the photometric stereo problem. To facilitate the
analysis, here we consider the idealized case where there
are no diffuse modeling errors, or that λ is small. In this
situation, the basic problem from Eq. (7) becomes

min
x,e
‖e‖0 s.t. y = Ax+ e, (15)

which represents the pixel-wise analog of Eq. (5). If the
lighting directions and sparse errors are in general position
(meaning they are not arranged in an adversarial configu-
ration with zero Lebesgue measure), then it can be shown
that the minimizer of Eq. (15) denoted x0 is guaranteed to
be the correct normal vector as long as the associated feasi-
ble error component e = y − Ax0 satisfies ‖e‖0 < n− 3.
Therefore, a relevant benchmark for comparing photometric
stereo algorithms involves quantifying conditions whereby
a candidate algorithm can correctly compute x0.

In this context, recent theoretical results have demon-
strated that any minimizer x1 of the `1 relaxation approach
will equivalently be a minimizer of Eq. (15) provided ‖e‖0
is sufficiently small relative to a measure of the structure
in columns of the lighting matrix A [2]. However, for typ-
ical photometric stereo problems the requisite equivalency
conditions often do not hold (i.e., ‖e‖0 is required to be pro-
hibitively small) both because of structure imposed by the
lighting geometry and implicit structure that emerges from
the relatively small dimensionality of the problem (meaning
we do not benefit from asymptotic large deviation bounds
that apply as n becomes large). Fortunately, SBL offers the
potential for improvement over `1 via the following result.

Theorem: For all σ2
x > 0 (and assuming λ → 0), if Γ∗ is

a global minimum of Eq. (12), then the associated estima-
tor xsbl will be a global minimum of Eq. (15). Moreover,
for σ2

x sufficiently large it follows that: (i) Any analogous
locally minimizing SBL solution is achieved at an estimate
xsbl satisfying ‖y − Axsbl‖0 ≤ n − 3, (ii) SBL can be
implemented with a tractable decent method such that con-
vergence to a minimum (possibly local) that produces an
xsbl estimator as good or better than the global `1 solution

is guaranteed, meaning ‖y −Axsbl‖0 ≤ ‖y −Ax1‖0.

The basic idea of the proof is to transform the cost func-
tion using block-matrix inverse and determinant identities,
as well as ideas from [2], to extend SBL properties derived
in [14] to problems in the form of Eq. (15). First, we con-
sider the limit as σ2

x becomes large. It is then possible using
linear algebra manipulations to generate an equivalent cost
function where Σy is now equal to BΓBT +λI for some B
with BTA = 0. We then apply known results for SBL with
this revised Σy and arrive at the stated theorem.

We may thus conclude that SBL can enjoy the same the-
oretical guarantees as the `1 solution yet boosted by a huge
potential advantage assuming that we are able to find the
global minimum of Eq. (12) (which will always produce an
xsbl = x0, unlike `1). There are at least two reasons why
we might expect this to be possible based on insights drawn
from [14]. First, the sparse errors ewill likely have substan-
tially different magnitudes depending on image and object
properties (meaning the non-zero elements of e will not all
have the same magnitude), and it has been shown that in
this condition SBL is more likely to converge to the global
minimum [14]. Secondly, as discussed previously, A will
necessarily have some structure unlike, for example, high
dimensional random matrices. In this environment, SBL
vastly outperforms `1 because it is implicitly based on an
A-dependent sparsity penalty that can compensate, at least
in part, for structure in A. To clarify this point, we note that
the SBL procedure can equivalently be recast as the min-
imization of a function in the same form as the canonical
sparse optimization problem given by Eq. (15), but with a
different sparse penalty function that is directly dependent
on A. Thus the matrix A appears twice with SBL, once ex-
plicitly in the constraint specification and once embedded
in the penalty function. It is this embedding that helps com-
pensate for structure in the A-dependent constraint surface,
a claim that has been verified by numerous experiments be-
yond the scope of this paper.

3. Experiments
Experiments on both synthetic and real data were carried

out. All experiments were performed on an Intel Core2 Duo
E6400 (2.13GHz, single thread) machine with 4GB RAM
and were implemented in MATLAB. For the SBL- and `1-
based methods we used λ = 1.0−6 in the synthetic exper-
iments with no diffuse modeling errors (Section 3.1), and
λ = 1.0−2 for the other cases (Sections 3.2 and 3.3). We
set σ2

x = 1.06 for all experiments.

3.1. Quantitative evaluation with synthetic images

We generate 32-bit HDR gray-scale images of two ob-
jects called Bunny (256 × 256) and Caesar (300 × 400)
with foreground masks under different lighting conditions
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Figure 2. Recovery of surface normals from 40 images of Caesar dataset (300×400) with explicit shadow removal (Exp.3-1(a)). (a) Input,
(b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in degrees).
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(a) Bunny (c) SBL (e) R-PCA (f) LS (g) SBL (i) R-PCA (j) LS(d) L1 (h) L1(b) G.T.

Figure 3. Recovery of surface normals from 40 images of Bunny (256 × 256) dataset without explicit shadow removal (Exp.3-1(b)). (a)
Input, (b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in degrees).
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Figure 4. Recovery of surface normals from 40 images of Bunny dataset with explicit shadow removal and additive Gaussian noises (30%)
(Exp.3-1(b)). (a) Input, (b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in degrees).

whose directions are randomly selected from a hemisphere
with the object placed at the center. Specular reflections are
attached using the Cook-Torrance reflectance model [3] and
cast/attached shadows are synthesized under each lighting
condition. We change experimental conditions with regard
to the number of images, surface roughness (i.e., the ra-
tio of specularities), shadow removal (i.e., whether or not a
shadow mask is used to remove zero-valued elements from
the observation matrix O), and the presence of additional
Gaussian noise. Note that when in use (as defined for each
experiment), the shadow mask is applied equivalently to all
algorithms. To increase statistical reliability, all experimen-
tal results are averaged over 20 different sets of 40 input
images. The average ratio of specularities in Bunny and
Caesar are 8.4% and 11.6% and that of cast/attached shad-
ows are 24.0% and 27.8% respectively. For the quantita-
tive evaluation, we compute the angular error between the
recovered normal map and the ground truth. In this exper-
iment, our methods via sparse regression are implemented
by both SBL and a convex `1-norm based relaxation (L1).
We compare our methods with the R-PCA-based method
proposed by Wu et al. [16] (using a fixed trade off param-
eter) and the standard least squares (LS)-based Lambertian
photometric stereo [15] estimate obtained by solving

min
N
‖O −NTL‖22. (16)

(a) Valid number of images for effective recovery
In this experiment, we vary the number of images

to estimate the minimum number required for effective
recovery when using the shadow mask with fixed surface
roughness. Once 40 images are generated for each dataset,
the image subset is randomly sampled from a dataset. We
illustrate the result in Table 1 and Fig. 2. We observe
that the sparse-regression-based methods are significantly
more accurate than both R-PCA and LS. We also observe
that SBL is more accurate than `1, although somewhat
more expensive computationally.2 Note that, although
not feasible in general, when the number of images is
only 5, the most accurate and efficient implementation
for regression could be to just systematically test every
subset of 3 images (i.e., brute force search only requires 10
iterations at each pixel).

We also compared with a RANSAC-based approach
proposed by Mukaigawa et al. [9] to empirically verify that
our well-constrained formulation contributes to improved
performance. The results are presented in Table 2. We
have added standard deviations in the table for studying
the estimation stability. It shows that although we use a
large number of samples for RANSAC (e.g., 2000), the

2The SBL convergence rate can be slower with fewer images because
of the increased problem difficulty. This explains why the computation
time may actually be shorter with more images.
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Table 1. Experimental results of Bunny (left) / Caesar (right) dataset with varying number of images (Exp.3-1(a)).
No. of 

images 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

5 6.0 6.0 15.3 7.0 4.7 4.3 10.7 4.8 46.5 13.6 15.7 4.6 

10 0.09 0.61 3.8 1.9 0.27 0.58 0.81 1.8 36.3 13.6 37.8 5.9 

15 0.076 0.16 0.21 1.6 0.052 0.13 0.19 1.6 26.8 13.1 55.1 6.3 

20 0.033 0.080 0.11 1.6 0.022 0.078 0.11 1.6 24.2 13.5 70.5 6.9 

25 0.018 0.055 0.084 1.6 0.010 0.048 0.069 1.6 23.1 14.1 86.0 7.6 

30 0.012 0.037 0.080 1.7 0.0048 0.032 0.065 1.7 23.1 14.2 121.0 8.4 

35 0.0057 0.023 0.098 1.6 0.0029 0.019 0.093 1.6 22.7 14.6 161.3 8.5 

40 0.0039 0.019 0.12 1.6 0.0020 0.015 0.12 1.6 22.6 15.0 200.7 9.4 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

6.2 6.0 26.2 7.4 4.73 4.63 31.0 4.97 106.4 34.2 45.8 15.9 

0.24 0.40 10.7 0.94 0.19 0.26 1.8 0.93 97.2 34.1 93.7 19.2 

0.044 0.11 2.6 0.77 0.047 0.083 0.14 0.76 67.0 31.4 153.3 22.0 

0.018 0.051 0.079 0.76 0.015 0.035 0.065 0.72 60.9 32.7 177.5 23.3 

0.011 0.034 0.068 0.76 0.0081 0.023 0.059 0.76 57.9 34.3 196.9 25.1 

0.0063 0.018 0.043 0.77 0.0082 0.018 0.043 0.77 58.1 33.2 231.7 27.7 

0.0045 0.012 0.036 0.78 0.0031 0.0084 0.033 0.80 58.4 34.5 259.2 29.4 

0.0031 0.0094 0.037 0.76 0.0019 0.0063 0.034 0.78 59.6 35.2 281.2 31.5 

Table 2. Comparison with RANSAC based approach [9] (Exp.3-1(a)).
No. of 

Images 

Mean error  Median error  Standard deviation Elapsed time 

SBL RANSAC SBL RANSAC SBL RANSAC SBL RANSAC 

5 6.0 6.7 4.7 5.4 4.1 4.4 46.5 52.3 

10 0.09 0.74 0.27 0.38 0.35 1.4 36.3 544.0 

15 0.076 0.61 0.052 0.12 0.059 1.9 26.8 958.4 

20 0.033 0.70 0.022 0.058 0.027 1.2 24.2 1048.9 

25 0.018 1.0 0.010 0.063 0.020 2.6 23.1 1141.8 

30 0.012 2.3 0.0048 0.042 0.012 4.0 23.1 1227.8 

35 0.0057 3.2 0.0029 0.051 0.0064 9.2 22.7 1327.9 

40 0.0039 2.1 0.0020 0.046 0.0048 4.3 22.6 1430.4 

Table 3. Results of Bunny without shadow removal (Exp.3-1(b)).
No. of 

images 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

5 5.2 11.9 12.1 12.1 5.0 12.3 12.5 12.5 213.0 37.0 45.8 5.1 

10 2.8 5.6 10.9 10.9 2.3 5.6 11.3 11.3 98.9 33.0 93.7 6.0 

15 1.9 4.0 9.9 10.0 2.3 4.0 10.1 10.2 66.8 32.5 153.3 7.4 

20 1.2 2.7 9.4 9.5 1.0 2.7 9.6 9.6 52.9 30.0 177.5 7.6 

25 0.81 1.9 8.9 9.0 0.69 1.8 8.9 9.0 46.2 31.0 196.9 9.1 

30 0.62 1.6 9.0 9.1 0.61 1.5 8.9 8.9 41.1 32.0 231.7 9.4 

35 0.59 1.5 9.1 9.1 0.58 1.4 9.3 9.3 41.1 34.4 259.2 11.0 

40 0.53 1.2 8.8 8.9 0.58 1.2 9.0 9.1 39.4 33.3 281.2 10.7 
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Figure 5. Experimental results of Bunny with varying amount of
specularities. The x-axis and y-axis indicate the ratio of specular-
ities and the mean angular error of normal map (Exp.3-1(b)).

RANSAC-based approach cannot always stably find the
solution especially when the number of images is large. On
the other hand, our method succeeds in finding the solution
stably and efficiently.

(b) Robustness to various corruptions
We now set three different conditions for evaluating

the robustness of our method to effects of (i) specularities
(varying specularities, explicit shadow removal, no image
noises), (ii) shadows (fixed specularities, no shadow re-
moval, no image noises), (iii) image noises (fixed specu-
larities, explicit shadow removal, varying amount of image
noises). The ability to estimate surface normals without an
explicit shadow mask can be important since in practical
situations shadow locations may not always be easy to de-
termine a priori. The number of images is 40 in (i), (iii)
and varying from 5 to 40 in (ii). We use Bunny for eval-
uation and the ratio of specularities and image noises are
varying from 10% to 60% and 10% to 50%, respectively in

Table 4. Experimental results of Bunny with varying amount of
additive Gaussian noises (Exp.3-1(b)).

 Dens. of 

noises (%) 

Mean error (in degrees) Median error (in degrees) 

SBL L1 R-PCA LS SBL L1 R-PCA LS 

10 0.0079 0.040 0.16 3.3 0.0060 0.039 0.16 3.3 

20 0.021 0.11 0.79 4.4 0.019 0.099 0.80 4.3 

30 0.068 0.29 3.6 5.3 0.060 0.25 3.2 5.2 

40 0.21 0.70 9.8 6.2 0.18 0.63 9.9 6.1 

50 0.58 1.5 11.7 7.0 0.53 1.4 11.7 6.9 

0

5

(a) (b) (c) (d) (e)
0

10

Figure 6. Comparison between SBL and `1-based method. Errors
of (a) SBL and (b) L1 (in degrees). The per-pixel number of (c)
specularities, (d) shadows, (e) corruptions (The maximum is 5).

(i) and (iii). Image noise obeys a Gaussian distribution (σ2

is 0.1). The results are illustrated in Fig. 3, Fig. 4, Fig. 5,
and Table 3 and Table 4. In summary, our methods out-
perform both R-PCA and LS in accuracy and outperform
R-PCA in efficiency in the presence of any kind of corrup-
tions. We also observe that SBL is more accurate than `1
in all conditions but more computationally expensive. As
expected, performance of each method degrades as the ratio
of specular corruptions increases making the optimal solu-
tion more difficult to estimate. Likewise, when the shadow
mask is removed additional corrupted pixels (outliers) con-
taminate the estimation process and each algorithm must try
to blindly compensate. SBL performs best since it is able
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Figure 7. Experimental results with real datasets. We used three kind of datasets called Chocolate bear (25 images with 261 × 421), Fat
guy (40 images with 293 × 344) and Doraemon (40 images with 269 × 420). (a) Example of input images (b), (C) Recovered surface
normals and close-up views (d) Elevation angles of recovered surface normals (e) Azimuth angles of recovered surface normals

to handle a wider spectrum of sparse errors (see Fig. 3, Ta-
ble 3, and also Fig. 6 discussed below). Finally, we further
compare estimation properties between SBL and L1 using
a case from Table 3 where the number of images is 5 for
simplicity, and we do not remove shadows. Error maps and
per-pixel numbers of corruptions are displayed in Fig. 6. We
observe that the `1 method typically fails when any shadows
appear while SBL can find the correct solution in most pix-
els as long as the number of corruptions is less than 3. Note
that this is at the theoretical limit given only 5 images.

3.2. Qualitative evaluation with real images

We also evaluate our algorithm (only the SBL imple-
mentation) using real images. We captured RAW images
without gamma correction by Canon 30D camera with a
200[mm] telephotolens and set it 1.5[m] far from target
object. Lighting conditions are randomly selected from a
hemisphere whose radius is 1.5[m] with the object placed at
the center. For calibrating light sources, a glossy sphere was
placed in the scene. We use a set of 25 images of Choco-
late bear (261 × 421), and 40 images each of Doraemon
(269× 420) and Fat guy (293× 344). We evaluate the per-
formance by visual inspection of the normal maps, elevation
angle maps (orientations between normals and a view di-
rection) and azimuth angle maps (normal orientation on the
x-y plane) that are illustrated in Fig. 7. We observe that our
method can estimate smoother and more reasonable normal
maps in the presence of a large amount of specularities.

3.3. Evaluations with model mismatch errors

To explicitly test how deviations from the ideal Lamber-
tian assumption affect the proposed method, we conducted

two additional experiments with (a) various kinds of ma-
terials with non-Lambertian diffusions and (b) inaccurate
lighting directions. In both cases, the effective corruptions
cannot be completely modeled as sparse errors.
(a) Various kind of non-Lambertian materials

In this experiment, we test our sparse-regression-based
method on 40 sphere images rendered with one hundred
BRDF functions from the MERL database [7] (the image
size is 256 × 256). From the estimation results illustrated
in Fig. 8, we observe that for materials whose specular re-
flections and diffusive reflections are clearly distinguish-
able (e.g., (10) specular-violet-phenolic), our method out-
performs the other two methods even if the diffusive compo-
nent does not completely obey the Lambertian rule. On the
other hand, in a case where a diffusive component is dom-
inant, our sparse-regression-based method seems to have
limited advantages over other methods (e.g., (40) black-
fabric). We also observe that all methods have difficulty
in handling metallic objects which do not obey both the
Lambertian rule and the sparsity assumption of corruptions
entirely (e.g., (95) black-obsidian), however our method is
consistently the most reliable overall.
(b) Inaccurate lighting directions

For this experiment, we synthesized 40 Bunny images
and then used incorrect lighting directions (five degrees of
angular error in random directions were added) to recover
surface normals. In addition, we also attempt to refine light-
ing directions by iteratively recovering both surface normals
and lighting directions based on the symmetrical structure
of Eq. (4). First, we estimate surface normals using the
given, errant lighting directions. Then, fixing recovered
surface normals, we update the lighting directions using a

7



0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90
Material ID

SBL L1 R-PCA LS

0 5 10 15 20 25 30 35 40 45

50 55 60 65 70 75 80 85 90 95

M
ea

n 
an

gu
la

r e
rr

or
 (i

n 
de

gr
ee

s)
 

Figure 8. Experimental results of synthesized sphere with MERL
BRDF dataset [7] (Exp.3-3(a)). We aligned results in ascending
order of mean angular error of SBL. The material names are in-
cluded in the supplementary.

least squares fit. We continue this process iteratively until
convergence. The experimental results are illustrated in Ta-
ble 5. We observe that our method outperforms the other
two methods even without refining the lighting directions;
however, optimizing the lighting direction via a few itera-
tions always improves the normal estimates. (Although the
exact optimal number of iterations may be difficult to deter-
mine, a single iteration always has a substantial benefit).

4. Conclusion
Herein we have demonstrated the superior performance

of our sparse regression approach to photometric stereo
through extensive analyses and experiments. In particular,
our method gives more accurate estimates of surface nor-
mals than previous least squares and R-PCA approaches
while remaining computationally competitive. Regarding
competing sparse regression techniques, SBL is both theo-
retically and empirically superior to `1-based estimates but
requires a modest increase in computational cost. A current
limitation of our method is that we assume the diffusive
component is Lambertian. Therefore non-Lambertian dif-
fusive objects can potentially be problematic, although this
affect is partially mitigated by the diffuse and sparse error
terms built into our model. However, in the future we will
refine our model to explicitly handle non-Lambertian diffu-
sive components coupled with sparse corruptions to recover
surface normals robustly across a wider range of materials.
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