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ABSTRACT

Depth maps captured by active sensors (e.g., ToF cameras
and Kinect) typically suffer from poor spatial resolution, con-
siderable amount of noise, and missing data. To overcome
these problems, we propose a novel depth map up-sampling
method which increases the resolution of the original depth
map while effectively suppressing aliasing artifacts. Assum-
ing that a registered high-resolution texture image is avail-
able, the cost-volume filtering framework is applied to this
problem. Our experiments show that cost-volume filtering
can generate the high-resolution depth map accurately and
efficiently while preserving discontinuous object boundaries,
which is often a challenge when various state-of-the-art algo-
rithms are applied.

Index Terms— Depth map super-resolution, cost-volume
filtering, up-sampling

1. INTRODUCTION

Depth map acquisition is an active research area in image
processing and computer vision. Various depth acquisition
methods have been proposed to date; these can generally be
categorized into two approaches: passive and active. Passive
approaches generate a depth map of the scene by multiple
image correspondences and triangulation [1], whereas active
sensors, e.g., time-of-flight (ToF) and Kinect cameras, mea-
sure the distance from the camera to the objects directly using
active infrared illumination. While those active cameras are
becoming a popular alternative to passive approaches due to
their simplicity, depth maps acquired by active sensors often
contain considerable noise for objects with low reflectivity,
and have very low-resolution.

So far, many works on depth map up-sampling have
emerged and they are mainly categorized into two classes.
One class is motivated by the image super-resolution liter-
ature, which explicitly considers the low-resolution image
formation process. Some algorithms in this class recon-
struct a high-resolution depth map of a static scene by fusing
multiple low-resolution depth maps that were observed to-
gether [2, 3]. More recently, learning-based single image
super-resolution techniques were integrated into depth map
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super-resolution to handle dynamic scenes [4]. Though they
do not require a registered high-resolution texture image, a
time-consuming dictionary learning for each magnification
factor is often required.

On the other hand, the second class determines depth
values at interpolated coordinates of the input domain in the
manner of multi-modal filtering [5–8] or Markov random
field (MRF) modeling [9, 10]. This class works well for
noisy low-resolution depth maps by leveraging a registered
high-resolution texture image assuming the co-occurrence of
depth and texture structures. While general purpose multi-
modal filters (e.g., joint bilateral up-sampling [5] or guided
image up-sampling [6]) have been applied to up-sample a
low-resolution depth map, they sometimes give inaccurate
edges which result in considerable color bleeding artifacts.
To overcome this problem, Park et al. [10] integrated a non-
local means filter into the smoothness term of an MRF-based
depth map up-sampling scheme, which reasonably preserves
object discontinuities. Moreover, some recent works quantize
the depth values into several discrete layers. Yang et al. [7]
build a 3-D cost-volume using a low-resolution depth map
and then perform the joint bilateral filtering [11] for a 2-D
cost slice of each depth candidate. Min et al. [8] proposed
a weighted mode filter which also finds the global mode of
a filtered cost-volume yet more efficiently than [7]. These
approaches use an original sparse depth map to construct a
cost function for the up-sampling process, which leads to
critical aliasing artifacts when the up-sampling ratio is high
(e.g., more than 8×). To solve this problem, Yang et al. [7]
iteratively perform the joint bilateral filtering. Min et al. [8]
hierarchically iterate the up-sampling process from coarse to
fine levels. While effective, these approaches sometimes give
over-smoothed edges and blurred details during iterations.

In this paper, we instead leverage the cost-volume filter
which relies on the guided image filter [12]. The cost-volume
filtering was originally proposed to alternate time-consuming
MRF-based solutions for optimizing labeling problems. The
authors of [12] have shown that the framework can be applied
to many different applications such as stereo matching, opti-
cal flow, and binary segmentation and demonstrated that high-
quality results are obtained fast. The main differences be-
tween our method using cost-volume filtering and the method
proposed by Yang et al. are summarized as follows:

1) We apply the guided image filtering [6] when each



slice of cost-volume is filtered because the guided filtering
has more potential to achieve an efficient computation than
the joint bilateral filtering [11].

2) We design a new confidence measure which not only
reduces aliasing artifacts but also restores the missing depth
areas without time-consuming iterations.

As a result, the proposed method can up-scale the depth
map fast while preserving discontinuous object boundaries
and suppressing aliasing artifacts.

2. THE PROPOSED METHOD

The proposed method utilizes the cost-volume filtering frame-
work to super-resolve the small resolution of an input image.
We assume that a well-aligned high-resolution texture (RGB
image) is available. The proposed method consists of three
main steps: 1) construction of a cost volume, 2) filtering of a
cost-volume, and 3) selection of the final label.

Cost-volume construction: the cost-volume C is con-
structed by using the absolute difference between the poten-
tial discrete depth label l ∈ {1, ..., N} and an initially up-
sampled depth d̂H from the input depth map dL with a weight
value ω for each pixel p:

Cp,l = ωp||l − d̂Hp ||. (1)

The initial high-resolution depth map d̂H is obtained by
the nearest neighbor approach. We apply this approach to
avoid blurred pixels in the object boundaries because it com-
putes new pixels as the value of the nearest pixel in the origi-
nal image. However, the up-sampled result often suffers from
serious aliasing artifacts. To solve this problem, previous
works in [7, 8] iteratively perform the filtering process which
requires more computation time and produces blurry edges.
Instead, we measure the confidence ωp of d̂Hp :

ωp =

{
0 if d̂Hp < τ,

exp(
−(||IHp −I

L
p↓
||)2

2σ2 ) otherwise.
(2)

where IH is a guidance high-resolution image, IL is the
low-resolution image obtained by the nearest neighbor down-
sampling from IH to align with the input low-resolution depth
map, p↓ is the corresponding location in the low-resolution
image (if p = (x, y), then p↓ = ([x/s], [y/s]), s is a scaling
factor), and σ = 0.1 in all experiments. τ is a threshold value
which determines the missing pixels caused by occlusions,
shadows, and low-reflections.

The confidence is measured using the color difference of
pixels between coordinates p in IH at full-resolution and the
corresponding down-sampled coordinates p↓ in IL. It means
that the up-sampled depth value has high confidence when its
corresponding down-sampled color is similar to the one from
the original high-resolution image. Then, low-confidence
depth values are replaced by propagation from neighboring

Fig. 1. Our computed confidence map of the Moebius scene
(8× up-scaling). Note that bright pixels mean high confi-
dence.

pixels which have high confidence during the following fil-
tering and selection steps. Fig. 1 shows the confidence map
containing the weights ω of the Moebius scene.

Cost-volume filtering: In this step, each piece of the cost-
volume is filtered by guided image filtering. The output of the
filtering at pixel p is a weighted average of pixels in the same
label l:

C ′p,l =
∑
q

Wp,q(I
H)Cq,l (3)

where C ′ is the filtered cost volume and p and q are the pixel
locations. The weight Wp,q , which is dependent on the high-
resolution color image IH , is as follows:

Wp,q =
1

|wk|2
∑

(p,q)∈wk

(1+(IHp −µk)T (Σk+εU)−1(IHq −µk)),

(4)
where Σk is a 3 × 3 covariance matrix, µk is a 3 × 1 mean
vector of r, g, and b in each 3-D window wk with dimensions
wx×wy centered at pixel k, and U is a 3× 3 identity matrix.
ε is a user parameter and we set 0.04 for all our experiments.
More details about the parameter ε can be found in [6].

Cost selection: Finally, for each pixel p, the final label fp
which has the minimum cost value is selected by:

fp = arg min
l
C ′p,l. (5)

3. EXPERIMENTAL RESULTS

This section describes the evaluation of our method on various
data sets. τ in Eq. (2) is 10 and the number of candidate depth
values N is 256 (8 bits) for all experiments.

3.1. Middlebury stereo dataset

First, we compared our method with four different depth map
super-resolution methods: joint bilateral up-sampling [5],



(a) JBU [5] (b) MRFU [10] (c) WMFU [8] (d) Iterative JBU [7] (e) our method (f) Ground-truth

(g) JBU [5] (h) MRFU [10] (i) WMFU [8] (j) Iterative JBU [7] (k) our method (l) Ground-truth

Fig. 2. Experimental results of 8× image up-sampling. The upper row represents the results on the clean Moebius set and the
lower one illustrates results on a noisy Art data set from [10].

MRF-based method [6], weighted mode filtering [8], and it-
erative joint bilateral up-sampling [7] using the Middlebury
Art and Moebius dataset. The original resolution of both
datasets is 1376 ×1088.

In this experiment, the low-resolution depth image is up-
sampled with a guidance of the corresponding high-resolution
RGB image. As depicted in Fig. 2, our up-sampling method
can super-resolve the low-resolution depth map while pre-
serving depth discontinuities. Table 1 shows that the proposed
method can generate lower error rates in terms of root means
squared error (RMSE). Table 2 shows the results on a noisy
dataset provided by [10]. The MRFU method produces the
best result in terms of RMSE in the noisy data up-sampling
case because it uses an MRF framework which is very robust
against noise. Our method also produces low error rates for
the noisy dataset, which indicates that our cost volume filter-
ing approach is also able to cope with noise. Furthermore,
we have achieved a very fast computation time using a GPU
implementation. It takes about 0.5 seconds to up-scale the
low-resolution image into 1376×1088 size. The scaling fac-
tor does not affect the computation time.

3.2. Kinect dataset

Kinect captures a registered RGB image and depth map. The
maximum resolution of depth is 640×480 while the maxi-
mum resolution of RGB is 1280×960. The captured depth
often suffers from missing data caused by occlusion and low

(a) Nearest neighbor up-sampling (b) our method

Fig. 3. Comparison of up-sampling results for the low-
resolution depth from Kinect.

reflectivity as shown in Fig. 3. Since our weight for these
corrupted pixels is 0, their depth values are restored by high
confident neighboring pixels. As a result, our method can
generate a high-resolution depth map while preserving depth
discontinuities.

4. CONCLUSIONS

In this paper, we have proposed a cost-volume filter based
depth map up-sampling. We have demonstrated that the pro-
posed method can generate a high-resolution depth with dis-
continuous object boundaries being preserved without an it-
eration, while suppressing aliasing artifacts. A certain lim-
itation of our method is that we need a well-aligned high-



Table 1. Quantitative Evaluation of Depth Map Super-resolution (RMSE)

Art Moebius

Method 2× 4× 8× 16× 2× 4× 8× 16×
JBU [5] 0.3538 0.6250 1.1327 2.0394 0.1886 0.4270 0.9546 1.6708

MRFU [10] 0.4306 0.6745 1.0734 2.2117 0.1795 0.2965 0.5218 0.8965

WMFU [8] 0.6521 0.9037 1.7460 3.2991 0.4672 0.6416 1.0044 1.7402

Iterative JBU [7] 0.5708 0.7002 1.5046 3.6903 0.3868 0.4760 0.6893 1.3660

Our method 0.3699 0.5408 0.8371 1.7101 0.1423 0.2252 0.4165 0.8107

Table 2. Quantitative Evaluation for Noisy Depth Map Super-resolution (RMSE)

Art Moebius

Method 2× 4× 8× 16× 2× 4× 8× 16×
JBU [5] 1.5069 1.9484 2.9241 4.6926 1.7015 1.9206 2.3483 3.0232

MRFU [10] 1.2401 1.8159 2.7047 4.3940 1.0343 1.4894 2.1289 3.0910

WMFU [8] 1.9708 2.3191 3.3818 5.1306 1.8693 2.0430 2.5612 3.4895

Iterative JBU [7] 1.3592 1.9315 2.4535 4.5192 1.2506 1.6334 2.0559 3.2054

Our method 1.2903 1.9689 3.1132 4.6957 1.0633 1.5357 2.4692 3.0372

resolution guidance image to achieve the best performance.
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