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ABSTRACT

Depth maps captured by multiple sensors often suffer from
poor resolution and missing pixels caused by low reflectiv-
ity and occlusions in the scene. To address these problems,
we propose a combined framework of patch-based inpainting
and super-resolution. Unlike previous works, which relied
solely on depth information, we explicitly take advantage of
the internal statistics of a depth map and a registered high-
resolution texture image that capture the same scene. We
account these statistics to locate non-local patches for hole
filling and constrain the sparse coding-based super-resolution
problem. Extensive evaluations are performed and show the
state-of-the-art performance when using real-world datasets.

Index Terms— depth-map super-resolution, depth-map
inpainting, ToF sensor, sparse Bayesian learning

1. INTRODUCTION

Dynamic 3D scene geometry acquisition methods are a ma-
jor research topic in image processing and computer vision.
Various depth acquisition methods have been proposed to
date; these can generally be categorized into two approaches:
passive and active. While passive approaches generate a dis-
parity map of the scene by multiple image correspondences
and triangulation [1, 2], active sensors, e.g., time-of-flight
(ToF) cameras, measure the distance from the camera to the
objects directly using active infrared illumination. In reality,
however, depth maps acquired by these sensors often contain
unreliable areas where the scene contains occluded regions
or objects with low reflectivity. Also, a depth map captured
by a ToF camera has very low-resolution (e.g., 176×144
in Swiss Ranger SR4000). Some extra image processing
steps are therefore required: depth map inpainting and super-
resolution.

While image inpainting methods have been studied [3,
4, 5], there is very little available literature on depth-map
inpainting [6]. To the best of our knowledge, there is no
work which uses a registered high-resolution texture image
for depth-map inpainting. In contrast, many works on depth-
map super-resolution exist, and they are mainly categorized
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into two classes. One class determines depth values at in-
terpolated coordinates of the input domain in the manner of
local filtering [7, 8, 9] or Markov random field (MRF) mod-
eling [10, 11], which uses a registered high-resolution texture
image to preserve sharp boundaries. While effective, this
approach is critically sensitive to the texture image quality.
The second class is motivated by image super-resolution lit-
erature, which explicitly considers the low-resolution image
generation process. Some algorithms in this class recon-
struct a high-resolution depth map of a static scene by fusing
multiple low-resolution depth maps that were observed to-
gether [12, 13]. More recently, learning-based single image
super-resolution techniques were integrated into depth-map
super-resolution to handle dynamic scenes. Aodha et al. [14]
learned the statistics of low-resolution and high-resolution
depth patches from external training sets and used them to
upsample a new low-resolution depth map in the MRF for-
mation. In contrast, Li et al. [15] derived a mapping function
from a low-resolution depth patch and its corresponding
color patch to a high-resolution depth patch via sparse cod-
ing. However, they require a large number of external clean
training sets and time-consuming dictionary learning for each
magnification factor. Also, the external statistics merely cap-
ture the co-occurring structures of depth and texture because
each scene in the training set is completely different.

In this paper, we propose a new method for depth map
inpainting and super-resolution which can produce a dense
high-resolution depth map from a corrupted low-resolution
depth map and its corresponding high-resolution texture im-
age. Both steps use the internal statistics of the input ge-
ometry and appearance (i.e., recurrence of the co-occurring
structures of depth/texture patches), which are learned di-
rectly from the input depth/texture images. We account for
the registered texture image to locate non-local patches for
hole filling and constrain the sparse coding problem with
patch-based super-resolution.

2. PROPOSED METHOD

In this section, we formulate a combined framework for
depth-map inpainting and super-resolution. Let Dl0 and
Il1 be a low-resolution depth map and a registered high-
resolution texture image, and let Dl1 be a high-resolution



depth map. We denote the hole and source regions in Dl0 as
H and S(, Dl0 \ H). The problem is how to reconstruct
Dl1 from Dl0 and Il1 while filling H in Dl0 . We solve these
problems separately under these assumptions: (1) The rela-
tive position between the color and depth cameras is known;
(2) The missing pixel region in the input depth map is known.

2.1. Patch-based depth map inpainting using internal
statistics of geometry and appearance

We extract two different sets, V,W , of the overlapped p × p
depth patches xSi ∈ Rp×p,xHi ∈ Rp×p from Dl0 as

V , {xSi|i = 1, · · · , n,xSi ∈ S}, (1)

W , {xHi|i = 1, · · · ,m, {xHi ∩ S} 6= ∅, {xHi ∩H} 6= ∅}.

In general patch-based image inpainting methods [3], hole re-
gions in xHi are restored iteratively by example-based syn-
thesis where a missing structure is propagated from a source
patch (xSi) with a partially similar structure. Once one patch
is inpainted, it is used as a new source, and all inpainted
patches are finally merged into a completely reconstructed
depth map. While effective, this propagation scheme is sensi-
tive to the filling order, which is inevitable when the missing
region is larger than a patch size. To overcome this difficulty,
our method utilizes another source, i.e. the texture image.

We divide the low-resolution texture image (Il0 ), which is
downsampled from Il1 , into overlapped patches ySi ∈ Rp×p
and yHi ∈ Rp×p with spatial positions that are the same as
xSi and xHi. xi ∈ {xSi,xHi} and yi ∈ {ySi,yHi} repre-
sent the same scene in the different domains (i.e., in geome-
try and appearance), and thus their structures are likely to be
correlated with each other. We observe that this relationship
tends to recur again in the close vicinity of the same images,
which implies that if the structures of two sufficiently close
depth patches are similar, then corresponding texture patches
are also similar and vice versa (i.e., yi ' yj ↔ xi ' xj). We
confirmed these statistics by simple inpainting experiments
shown in Fig. 1, where missing regions in a depth patch were
synthesized from the nearest neighbor depth patch, where the
distance was defined by depth or corresponding texture in-
formation. We found that appropriate depth patches could
be retrieved even in depth-less areas using texture informa-
tion; however, texture information did not contribute when
the patch was extracted from a distant region.

Following observations above, we find a pair of xHi ∈
W and xSj ∈ V with the smallest depth/texture combined
distance defined as follow,

f(xHi,xSj) = wDdD(xHi,xSj) + wIdI(yHi,ySj), (2)

where yHi and ySj are extracted at same positions of xHi
and xSj , and dD and dI are defined as,

dD(xHi,xSj) , 1
p2−NH ‖M(xHi − xSj)‖22, (3)

dI(yHi,ySj) , 1
p2 ‖yHi − ySj‖

2
2. (4)

Here, NH is the number of missing pixels in xHi, and M is
a sampling matrix which extracts xHi ∩ S. The weighting
factors wD and wI reasonably quantify the trustworthiness of
the depth/texture information as follows:

wD =
(

1− NH
p2

)(
1− NC

NCmax

)
, (5)

wI = e−‖yhc−ysc‖
2
2/2σy . (6)

Here σy is a variance in the Gaussian function (4.0 in our
implementation), Nc counts the connections of holes among
four neighbors and NCmax is the maximum possible num-
ber of connections. wD is designed from our observations
such that the depth patch is informative when the number of
holes is small and the holes are sparsely distributed rather
than concentrated locally. yhc and ysc are the center posi-
tions of yHi and ySj . wI reflects our observation that the
correlation between depth and texture decreases as the spatial
distance between yHi and ySj increases. Once every yHi
find their corresponding ySj , hole regions are synthesized
by overlapped nearest neighbor source patches via a voting-
based approach [16] to acquire a final purified depth map. Af-
ter the low-resolution depth map is restored, super-resolution
is applied to it, and is discussed in the next section.

2.2. Patch-based super-resolution using internal statistics
of geometry and appearance

A recent study of the internal statistics of a natural image [17]
stated that most small image patches in a natural image tend
to recur redundantly inside the image across different scales.
This observation forms the basis of the internal example-
based single image super-resolution approach [18, 17], and
we also learn a set of high-resolution/low-resolution pairs
of depth patches implicitly by using patch repetitions across
multiple image scales,

X , {(xi,yi)|i = 1, · · · , n,xi ∈ Dl−1
,yi ∈ Dl0}. (7)

Here yj ∈ Rh2×1 and xi ∈ Rl2×1 are vector representa-
tions of all possible h× h and l× l overlapped depth patches
that are extracted from the same position of Dl0 and Dl−1 ,
which is a depth map downsampled from Dl0 by the magni-
fication factor r (= h/l). Let p denote a l × l depth patch in
Dl0 to be upsampled. We can search for similar patches from
the learned patches (xi, i = 1, · · · , k) in Dl−1

(e.g., using a
k-approximate nearest neighbor search [19]) and their corre-
sponding high-resolution patches (yi, i = 1, · · · , k) provide a
strong prior indication of the appearance of a high-resolution
unknown patch (y∗) inDl1 . However, simply averaging these
high-resolution patches (yi) to recover an overall estimate of
(y∗) like [17] is problematic for depth-map super-resolution
because of its blurring effect (which stems from multiple in-
consistent high-resolution interpretations). However, only us-
ing the best patch reconstructs a false high-resolution edge



(a) Input color image (c) Inpainted by depth(b) Input depth map (d) Inpainted by texture (e) Ours (f) Wohlberg [5]

Fig. 1. Experimental results of patch-based depth map inpainting. Hole regions were synthesized by the nearest neighbor
patches in the same image, which were found by using (c) depth information only, (d) texture information only, (e) both depth
and texture information (proposed method). And we show the inpainted result by the method of Wohlverg [5] in (f).

when there is no ideally similar low-resolution patch inX . To
overcome these issues, we instead solve the following prob-
lem:

min
α

1

l2
‖p− φLα‖22 +

µ

h2
‖q − ψHα‖22 + λ‖α‖0. (8)

Here, φL ∈ Rl2×k is a matrix which consists of p’s k-nearest
neighbors (i.e., φL , [x1, · · · ,xk]) and ψH ∈ Rh2×k is a
matrix consisting of vectorized h × h texture patches in Il1
with the same location of each xi(i = 1, · · · , k). q ∈ Rh2×1

is a high-resolution texture patch in Il1 with the same loca-
tion as p. α ∈ Rk×1 is a coefficient vector and µ and λ are
trade-off parameters which are fixed as 0.05 and 10−6 in our
implementation, respectively. ‖ · ‖0 is an `0-norm penalty,
which counts the number of non-zero entries in the matrix.

The process contains two essential elements. First, we in-
troduce a sparsity penalty which is applied toα to reconstruct
a high-resolution depth patch with the smallest possible com-
bination of learned patches. This penalty avoids the visual
artifacts caused by multiple inconsistent high-resolution in-
terpretations, especially in the case of large k. Second, we
introduce a texture constraint which quantifies the observed
internal statistics that the geometry and appearance of the
same scene should be correlated with each other. Intuitively,
the coefficients (α) are recovered such that the target depth
patch (p) is synthesized from the sparsest possible combina-
tion of learned depth patches (φLα) and the reconstructed
high-resolution texture patch (ψHα) is consistent with the
registered high-resolution texture image (Il1 ). Then, Eq. (8)
can be transformed into the standard description of sparse
coding as,

min
α
‖b−Aα‖22 + λ‖α‖0, (9)

where b , [p/l,
√
µq/h]T and A , [φL/l,

√
µψH/h]T .

Eq. (9) entails a difficult combinatorial optimization problem
that must be solved efficiently at every patch. In most super-
resolution literature, it is common to replace the discontinu-
ous non-convex `0 norm with the convex surrogate `1 norm.
However, we instead apply a hierarchical Bayesian approxi-
mation called sparse Bayesian learning (SBL) to estimate α
which has been proved to give a better approximation of `0
norm [20].

2.3. Recovery of α and merging of high-res patches

SBL [21] assumes a standard Gaussian likelihood function for
the first-level diffuse errors giving p(b|α) = N(b;Aα, λI),
where I ∈ R(h2+l2)×(h2+l2) is the identity matrix. We then
apply independent zero-mean Gaussian prior distributions to
α as p(α) = N(α;0,Γ). Γ , [γ1, · · · , γn+1]T is a non-
negative vector of the variances in one-to-one correspondence
with elements of α. A small or zero-valued variance of γi
implies that the associated αi is constrained to be near zero.
Combining the likelihood and the prior using Bayes’ rule
leads to the posterior distribution p(α|b) ∝ p(b|α)p(α). The
main issue for estimation of α is the value of the unknown
parameter Γ. Without prior knowledge of the locations of the
zero coefficients, the empirical Bayesian approach to learn-
ing Γ is to maximize the resulting likelihood function with
respect to Γ [21]. Equivalently, we minimize,

L(Γ) , − log

∫
p(b|α)p(α)dα (10)

≡ log |Σb|+ bTΣ−1b b with Σb , AΓAT + λI,

with respect to Γ. While L(Γ) is non-convex, optimiza-
tion can be accomplished by adapting the majorization-
minimization approach from [20]. This technique essentially
involves the construction of rigorous upper bounds on two
terms in Eq. (11). While space precludes a detailed treatment
in this paper, the resulting update rules for the (k + 1)-th
iteration are given by

γ
(k+1)
i →

(
α
(k)
i

)2

+ z
(k)
i , ∀i, Γ(k+1) = diag[γ(k+1)],

zi
(k+1) → γ

(k)
i − γ(k)

i

2
AT

i (λI +AΓ(k)AT )−1Ai, (11)

α(k+1) → Γ(k)AT
(
λI +AΓ(k)AT

)−1

b.

Note that each γi is initialized with a random value. These
expressions only require O(k) computations, and are guaran-
teed to reduce L(Γ) until a fixed point Γ∗ is reached.

When a collection of overlapped patches {y∗i = φHα
∗
i |i =

1, · · · , n}, where φH is the high-resolution pairs of φL, is
reconstructed, we merge them into a single high-resolution
depth map. Because simple averaging of the depth values over
the overlapping regions is sensitive to outliers, we introduce a



weighting factor calculated from the photo-consistency of the
reconstruction. The value of j-th pixel in the high-resolution
depth map Dj

l1
is calculated as:

Dj
l1

=
1

Nj

∑
∀y∗
i |D

j
l1
∩y∗

i 6=∅

e
−

∑h2
j=1 (IH

∗
i,j−IHi,j)

2

2σI Sy∗i , (12)

where Nj ,
∑
e
−

∑h2
j=1 (IH

∗
i,j−IHi,j)

2

2σI , S is a sampling oper-
ator which extracts the corresponding element in y∗i . Hi,j is
the j-th element in the reconstructed texture patch that cor-
responds to a depth patch (y∗i ) and σI is the variance of the
Gaussian function (5.0 in our implementation). Intuitively,
we have high confidence in the value when the distance be-
tween the reconstructed texture and the original one is small.

3. RESULTS

In this section, we quantitatively evaluate our method using
real data. All experiments were performed on an Intel Core
i7-2640M (2.80 GHz, single thread) machine with 8 GB of
RAM and were implemented in MATLAB.

First, we evaluated our inpainting algorithm from visual
inspection of the inpainted results of a manually scratched art
dataset (See Fig. 1). We observed that our method works
for large missing regions, while the state-of-the-art image in-
painting method [5] has considerable trouble with them.

Second, we compared our method with three state-of-
the-art SR algorithms: sparse coding based image super-
resolution (ScSR) [22], patch-based synthesis (PbsSR) [14],
and weighted mode filtering (WMF) [9], and also compared
it with nearest neighbor interpolation (NN). We also applied
our method without the texture/sparsity constraints to con-
firm their contributions to our method. Note that only our
method and WMF use a registered texture image, and exter-
nal dictionary learning is required in ScSR and PbsSR. In
our implementation, we use l = 3 and k = 20, and use the
efficient PatchMatch algorithm [19] to find the k-NN patches.
For ScSR and PbsSR, we used the authors’ implementations
with their default parameter settings and dictionaries, which
are available from their websites. For WMF, we used the
parameters described in the original paper, except that we
set σI = σS = 15, which worked better than the original
values (σI = 6 and σS = 7). Each algorithm is evaluated in
terms of root mean square error(RMSE) and elapsed time for
four datasets, comprising art and mebius from the Middle-
bury stereo dataset (which are downsampled to 347× 277),
and the fountainP11 (using only the 6th image) and herzje-
suP8 (using only the 5th image) datasets from [23] (which
are downsampled to 345× 230) with a magnifying factor of
4. To make fair comparisons, inpainting is skipped in this
experiment and the missing pixels in the ground truth depth
map are neglected when calculating the RMSE. The results
are illustrated in Table 1 and Fig. 3. We show that our method

Table 1. Performance comparison with four real datasets.
  Root mean square error (RMSE) Ave. running time 

  art mebius fountain herzjesu   

Ours (full configuration), k=20 1.19 0.61 1.34 1.51 1162 (sec) 

Ours (w/o constraints), k=20 1.75 1.30 1.69 1.56   

ScSR [22] 2.82 3.10 8.70 6.58 1960 (sec) 

WMF [9] 1.46 1.04 1.62 1.74 275 (sec) 

PbsSR [14] 13.9 14.4 0.50 0.78 429 (sec) 

NN 14.2 14.8 1.60 1.69   

Ours ScSR [22]

WMF [9] PbsSR [14]

Input and ground truth depth map Registered Color Image

Fig. 2. Reconstructed 4× depth maps of art dataset.

outperforms all of the state-of-the-art algorithms on the art
and mebius datasets and shows the 2nd best performance on
the fountain and herzjesu datasets while ScSR suffers from
blurring effects, WMF appears to be sensitive to texture edges
and PbsSR has problems around the object boundaries.

4. CONCLUSION

In this paper, we have proposed depth-map inpainting and
super-resolution algorithms which explicitly capture the in-
ternal statistics of a depth-map and its registered texture im-
age and have demonstrated their state-of-the-art performance.
The current limitation is that we have assumed the accurate
registration of the texture image and have not assumed the
presence of sensor noise. In future work, we will evaluate our
method’s robustness to these problems to assess its handling
of more practical situations.
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