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Some Materials from Tutorials at CVPR2017

Tutorial on Theory and Application of Generative Adversarial
Networks

Event: CVPR 2017 at Honolulu
Date: Wednesday, 7/26/2017
Organizers: Ming-Yu Liu, Julie Bernauer, Jan Kautz

Time: PM 13:30 --- 14:30

Description

Generative adversarial network (GAN) has recently emerged as a promising generative modeling approach. It consists of a
generative network and a discriminative network. Through the competition between the two networks, it learns to model the
data distribution. In addition to modeling the image/video distribution in computer vision problems, the framework finds use in
defining visual concept using examples. To a large extent, it eliminates the need of hand-crafting objective functions for various
computer vision problems. In this tutorial, we will present an overview of generative adversarial network research. We will cover
several recent theoretical studies as well as training techniques and will also cover several vision applications of generative
adversarial networks.

Outlines https://github.com/mingyuliutw/cvpr2017_gan_tutorial
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Differentiable Generator Networks

B Generative Adversarial Networks(GAN; Goodfellow2014) are a
generative modeling approach based on differentiable generator
networks which is paired with discriminator networks

B The model transforms samples of latent variables z to sample x or
to distributions over samples x using a differentiable function
g(z; 0(9)), which is typically represented by a neural network

B This model class also includes variational autoencoders (VAE;
Kingma2014), which constrains the encoder to output a
conditional Gaussian distribution, and the decoder reconstructs
Inputs from samples from conditional distribution (generate blurry
Images due to the gaussian modeling)



Generative Adversarial Networks

B GAN (or Deep Convolutional GAN; DCGANN, Redford2016) are
based on a game theoretic scenario in which the generator network
must compete against an adversary

« The generator network directly produces samples x = g(z; 9(9))

« The discriminator network attempts to distinguish between
samples drawn from the training data and samples drawn from the
generator

« The discriminator network emits a probability value given by

d(x; 89), indicating the probability that x is a real training
example rather than a fake sample drawn from the model

Training Setgw//{ Discriminator

rapo / . =

Generator Fake image https://skymind.ai/wiki/generative-adversarial-network-gan




Generative Adversarial Networks




Generative Adversarial Networks

B The simplest way to formulate learning in generative adversarial
networks is as a zero-sum game, in which a function v(8(9?, (@)
determines the payoff of the discriminator. The generator receives
— v(09), 0(D) as its own payoff. During learning, each player
attempts to maximize its own payoff, so that at convergence

g* =arg rrbin max Ex~prdaca 1084 + Exep,ogen log(1—d(g(2)))
v(e(g), g(d))

M This drives the discriminator to attempt to learn to correctly
classify samples as real or fake. Simultaneously the generator
attempts to fool the classifier into believing its samples are real.
At convergence, the generator’s samples are indistinguishable
from real data, and the discriminator outputs Y2 everywhere



Alternating Gradient Updates

B Alternating gradient algorithm is generally applied to train the
GANS

(1) Fix g and perform a gradient step to

mélX IEX"'Px(data) lOg d(x) + IEx"’pz(model) lOg(l — d(-g (Z)))

(2) Fix d and perform a gradient step to

- mgin Ex~pmoden log(l — d(g(z))) (in theory)

- mgax Ex~psomoder 108 d(g(z)) (in practice)

B Under an ideal discriminator, the generator minimizes the Jensen-
Shannon divergence between p, and pg(z) s

Proof:https://medium.com/@jonathan_hui/pr
oof-gan-optimal-point-658116a236fb



Non-convergence in GANSs

B GAN training is difficult in practice because

« g and d are represented by neural networks and max v(g,d) Is

not convex
 In practice, the generator is harder to learn than discriminator.

If the generator Is not doing a good job yet, the gradient for the
generator diminishes and the generator learns nothing (Model

collapse)

B The challenge is how to train the generator successfully by

avoiding the vanishing gradient problem
B | SGAN, WGAN, WGAN-GP, EBGAN, BEGAN,

UnrolledGAN, DRAGAN



LSGAN

B | east-squared GANS (MAO2016): is designed to help the
generator better by minimizing Peason chi-square distance
between Px(data) T pz(model)and sz(model) (€9, a,b,c =

0,1,1)

, 1 ;1 1 ‘ )
IIEIIJ(D) = E[E"r'“*?cmm{m] I:(D(:E) — b) :| + E]Ez-wpz{z} |:(D((T(‘z)) - {1) :|

: 1 2
min J(G) = E[Ezmpz{z] [(D(G(EJJ - C)"}

B When py(aaca) aNd Dz (moder) are different, the gradient does not

vanish, and the solution converges as p, approaches p,

B Intuitively, LSGAN wants the target discriminator label for real
Images to be 1 and generated images to be 0. And for the generator,
It wants the target label for generated images to be 1.

mDin VLSGAN(D) :%Ewwpdata(m) [(D(fL‘) — 1)2] + %EzNiﬂz(z) [(D(G(Z)))ﬂ

min Vizoan(G) :%EZNPZ(Z) (D(G(2)) - 1)7].






Wasserstein GAN

B Wasserstein GAN (Arjovsky2016) minimizes the earth mover

distance between pygata) aNd Dzemoden)

B A distribution mapping function (critic) that is continuous with
respect to its parameters and locally lipschitz has a continuous and
almost everywhere differentiable Wasserstein distance.

EM(px.pc(z)) = inf E(x y)~rylllz = yll]

velllpx .pa(z))

GAN

Discriminator

max Eipyllog D(x)] + E.np, [log(l — D(G(2))]

WGAN  max Eop|D(x)| — E.npy | D(G(2))]

Generator

GAN  INax L. pylog D(G(2))]

wean  max B, [D(G(2))]

84

G

y = uzx + (1

min max Einpy[D(x)] —

E:nps[D(G(2))] + ABynpy [([IVy D(y)l]2 — 1)7]

D and G should be locally
lipschitz (e.g., w is small
enough): clip w between —c and
c (e.g., 0.001)

WGAN-GP (Gulrajani2017)
uses gradient penalty for
satisfying Lipschitz

—u)G(2) e y:imaginary samples

constraint (1-lipschitz)
without clipping



DCGAN LSGAN
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EBGAN

B Energy-Based GAN (Zhao2017) minimizes the energy function

based on the autoencoder which helps to stabilize the
discriminator training in the early stage (pretraining is available)

En(x) = ||Dec0der(Encoder(x)) — x|| (= max(0,m — En(G(2)))

- - - 3 +
- Discriminator: min Exp, ;..o [ERGO] + Exep o [M — En(G(2))]

- Generator: min By, ..., [En(G(@)]

Low energy High energy
1 0 value value

Energy function
Energy can be modeled

Function by an auto-

encoder.

Discriminator Discriminator Energy

Network: D Network: D Function

Inputimage  Generated image Inputimage Generated image

f

| |

Random vector Random vector



DCGAN vs EBGAN
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BEGAN

B Boundary-Equilibrium GAN (Barthelot2017) also uses the auto-
encoder-based EBGAN for discriminator, but introduces the
control parameter k; to control the learning process

Discriminator objective: n&in En(x) — ki En(G(2))
M

Generator objective: n}_ip En(G(z2))

Equilibrium objective: ki1 =kt + A\ (vEn(x) — En(G(2)))

W y is diversity ratio [0,1] and k is a tradeoff parameter which starts
from zero, then gradually increases



EBGAN vs BEGAN

b) Our results (128x128)



Unrolled GAN

B Unrolled GAN (Metz2017) considers several future updates of the
discriminator as updating the generator

B Update the discriminator in the same way

B Avoid that the generator generates samples from few modes

fic(0a,05) = Banp, [log(D(x3657))] + Buvion) [log(1 = D(G(z 00 057))]

- Forward Pass

/‘\ /_\ i eD Gradients
| ‘ g1 g2 8, Gradients

— — LDy 1 D
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DRAGAN

B DRAGAN (Kodali2017) is similar with WGAN-GP. The
difference is where the discriminator function calculated by the
critic network is gradient-constrained as |f(6) = 1|

WGAN-GP

i MaX Eprp [D(@)] = Banp [D(G(2))] + Ay [([IVy D)l 2 = 1)?]
y=uxr + (1 —u)G(2) e y:imaginary samples

DRAGAN

11%_1'11 II{,&}X Ermpx[log D(2)] — E.xp,[log(l — D(G(Z)))] + AEympy [([IV, D(y)]|2 — 1)2]

y = oax+ (1 — @)(;1: + 5) y: imaginary samples around true sample



Joint-Distribution of Multi-domain of Images

B Multi-domain images are views of an object with different
attributes
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Extending GAN for Joint Image Distribution Learning

Discriminator Discriminator

Network: D Network: D

Inputimage  Generated image --

Generator
Network G

Random vector




CoGAN

B Coupled Generative Adversarial Networks (CoGAN, Liu2016)
Inputs the unpaired images to train GAN for joint image
distribution learning

1 1 0 0

Discriminator Discriminator Discriminator Discriminator

Network 1: D4 Network 2: D2 Network 1: D4 Network 2: D2

Inputimage Inputimage  Generated image Generated image

Applying

Generator Generator
Network 1: G4 =~ i Network 2: G2




CoGAN




VideoGAN

B Video GAN (VGAN; Vondorick2016) generates a video whose
Inter-motion Is reasonably natural
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VideoGAN




MoCoGAN

B Motion and Content GAN (MoCoGAN; Tulyakov2017) treats a
video with a combination of motion and content and generates
frames one by one which are temporally consistent instead of a
video (high quality + variable length of a video)
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Image-to-Image Translation

Thermal to color Synthetic to real

Image to painting

. Bad weather to good
weather

. Greyscale to color

Day to night Summer to winter *



Conditional GAN

B Conditional GAN inputs specific values instead of a random value
to generate the preferable pairs of input/output (firstly proposed in
super-resolution work by Ledig2017)

Goodfellow et al. NIPS’14 reX An—




SRGAN

B SRGAN (Super-resolution GAN, Ledig2017) upsamples a low-res
Image without blurry artifacts appeared in images recovered by
previous model-based approaches. The methods relates input-
output by a content loss

e — 2|, + |[VGG(x) — VGG (23))]]2 Content loss
SRGAN original
| (21.158.688)

& : ﬂ
“—f

bicubic
(21.59dB/0.6423)




Pix-to-Pix

B Pix2pix (Isola2017) extends the conditional GAN to general tasks
by learning the joint distribution of input and generated image
B The network is trained based on ground truth pairs of the input and
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Interactive Demo

https://affinelayer.com/pixsrv/



CycleGAN

B CycleGAN (Zhu2017) or DiscoGAN (Kim2017) train the
conditional GAN without pair of input/output images
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CycleGAN

B CycleGAN minimizes the cycle consistency loss

max prl :log(Dg(Flg(iUl)) — A Fgl(Flg(.CL‘l)) — X
Fia,F2q

T
_|_

Epx, [log(D1(Fo1(22)) — Al[Fi2(Fo1(r2)) — 22

T



Results

https://junyanz.github.io/CycleGAN/



StarGAN

B StarGAN (Choi2018) learns the domain transfer network with a
single generator/discriminator by paring the domain/image for
generating samples

(a) Cross-domain models (b) StarGAN




StarGAN

(a) Training the discriminator (b) Original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator
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Figure 3. Overview of StarGAN, consisting of two modules, a discriminator D and a generator (. (a) D learns to distinguish between
real and fake images and classify the real images to its corresponding domain. (b) GG takes in as input both the image and target domain
label and generates an fake image. The target domain label is spatially replicated and concatenated with the input image. (c¢) G tries to
reconstruct the original image from the fake image given the original domain label. (d) (G tries to generate images indistinguishable from
real images and classifiable as target domain by D.
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Endnotes

B Uncovered topics: machine learning with text (e.g., captioning,
visual QA, Deep Reinforcement Learning (e.g., AlphaGQ)),
recurrent neural net, 3-D CNN and so on

B Signal Processing part (by Prof. Kodama) starts at 1/15 (Tue)

B Final report (Machine Learning part):
Summarize and discuss a machine learning paper which was not
mentioned in the lecture, was published in 2017 or 2018, and was
cited by more than 100 papers (A4 2pages maximum, deadline
will be announced by Prof. Kodama)
- E.g.) Why do you think the paper was cited by many papers?

What is the importance?

- E.g.) Any suggestions to improve the result?
- Please freely describe your idea rather than just summarize it!




