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Regularization for Deep Learning



Parameter Norm Penalties

◼ Regularization is important for the neural networks to work for the 

generalization (by avoiding over-under-fitting)

◼ Many regularization approaches are based on limiting the capacity 

of models by adding a parameter norm penalty Ω(𝜃) to the 

objective function 𝐽 as: ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝜽)

◼ Different choices for the parameter norm can result in different 

solutions being preferred. It is often happing that we use different 

𝛼 for different layers 

◼ In neural networks, we typically chose to parameter norm

penalty that penalizes only the weights of the affine

transformation at each layer and leave the bias unregularized

since the bias does not require much data to fit



L2 Parameter Regularization (1)

ሚ𝐽 𝝎; 𝑋, 𝒚 =
𝛼

2
𝝎𝑇𝝎+ 𝐽 𝝎; 𝑋, 𝒚

◼ L2 parameter norm is called as weight decay, ridge regression or 

Tikhonov regularization

∇𝝎 ሚ𝐽 𝝎; 𝑋, 𝒚 = 𝛼𝝎 + ∇𝝎𝐽 𝝎; 𝑋, 𝒚

𝝎 ← 𝝎− 𝜖 𝛼𝝎 + ∇𝝎𝐽 𝝎; 𝑋, 𝒚 = 1 − 𝜖𝛼 𝝎 − 𝜖∇𝝎𝐽 𝝎; 𝑋, 𝒚

◼ We can see that the addition of the weight decay term has 

modified the learning rule to multiplicatively shrink the weight 

vector by a constant factor on each step



L2 Parameter Regularization (2)

◼ Assuming that 𝐽 𝝎; 𝑋, 𝒚 = 𝐽(𝝎), then the second order Tayler 

expansion around a critical point 𝝎∗ is

𝐽 𝝎 = 𝐽 𝝎∗ +
1

2
𝝎−𝝎∗ 𝑇𝐻 𝝎−𝝎∗ , ∇𝝎𝐽 𝜔

∗ = 0

◼ መ𝐽 𝝎 = 𝐽 𝝎 +
𝛼

2
𝝎𝑇𝝎, the minimum of መ𝐽 𝝎 occurs where its 

gradient: 
𝛼𝝎 + 𝐻 𝝎−𝝎∗ = 0

𝝎 = 𝐻 + 𝛼𝐼 −1𝐻𝝎∗

◼ As 𝛼 increases, weight decay rescales 𝝎∗ along the axis defined 

by the eigenvectors of 𝐻. 

𝝎 = 𝑄 Λ + 𝛼𝐼 −1Λ𝑄𝑇𝝎∗

𝐻 = 𝑄Λ𝑄𝑇

(eigen decomposition)



L2 Parameter Regularization (3)



L2 Parameter Regularization (4)

◼ L2 regularization causes the learning algorithm to “perceive” the 

input X as having higher variance, which makes it shrink the 

weights on features whose covariance with the output target is low 

compared to this added variance

◼ Assuming that 𝐽 𝝎; 𝑋, 𝒚 = 𝑋𝝎 − 𝒚 𝑻 𝑋𝝎 − 𝒚 +
𝛼

2
𝝎𝑇𝝎, then:

𝝎 = 𝑋𝑇𝑋 + 𝛼𝐼 −1𝑋𝑇𝒚

𝝎∗ = 𝑋𝑇𝑋 −1𝑋𝑇𝒚



L1 Parameter Regularization (1)

◼ L1 regularization on the model parameter 𝝎 is defined as 

Ω 𝝎 = 𝝎 1

ሚ𝐽 𝝎; 𝑋, 𝒚 = 𝛼 𝝎 1 + 𝐽 𝝎; 𝑋, 𝒚

∇𝝎 ሚ𝐽 𝝎; 𝑋, 𝒚 = 𝛼sign(𝝎) + ∇𝝎𝐽 𝝎; 𝑋, 𝒚

◼ Assuming that the Hessian matrix 𝐻 is diagonal (i.e., if the data for 

the linear regression problem has been preprocessed to remove all 

correlation between the input features by e.g., PCA),

መ𝐽 𝝎; 𝑋, 𝒚 = 𝐽 𝝎∗; 𝑋, 𝒚 +

𝑖

1

2
𝐻𝑖,𝑖 𝜔𝑖 − 𝜔𝑖

∗ 2 + 𝛼|𝜔𝑖|

◼ L1 regularization results in the solution that is more sparse



L1 Parameter Regularization (2)

መ𝐽 𝝎; 𝑋, 𝒚 = 𝐽 𝝎∗; 𝑋, 𝒚 +

𝑖

1

2
𝐻𝑖,𝑖 𝜔𝑖 −𝜔𝑖

∗ 2 + 𝛼|𝜔𝑖|

𝜔𝑖 = sign 𝜔𝑖
∗ max 𝜔𝑖

∗ −
𝛼

𝐻𝑖,𝑖
, 0

1. In the case where 𝜔𝑖
∗ ≤ 𝛼/𝐻𝑖,𝑖, the optimal value of 𝜔𝑖 under the 

regularized objective is simply 𝜔𝑖=0. This occurs because the 

contribution of 𝐽 to the regularized objective function ሚ𝐽 is 

overwhelmed, in direction i, by L1 regularization (sparsity)    

2. In the case where 𝜔𝑖
∗ > 𝛼/𝐻𝑖,𝑖, the regularization does not move 

the optimal value of 𝜔𝑖 to zero but just instead shifts it in that 

direction by a distance equal to 𝛼/𝐻𝑖,𝑖



Norm Penalties as Constrained Optimization

ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝜽)

◼ Assume we want to minimize a function subject to constrains, we 

can construct a generalized Lagrange function composed of KKT 

multiplier and a function representing whether the constraint is 

satisfied. If we constraint Ω to be less than k:

ℒ 𝜽, 𝛼; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼(Ω 𝜽 − 𝑘)

𝜽∗ = argmin
𝜃

max
𝛼,𝛼≥0

ℒ 𝜽, 𝛼; 𝑋, 𝒚

◼ The reason to use explicit constraints rather than penalties 

(i. e., min𝛼𝝎𝑇𝝎 → s. t. , 𝛼𝝎𝑇𝝎 ≤ 𝑘) is;

a. When we need proper k, and do not waste time to find 𝛼
b. Penalties try to 𝝎 to be zero, which may make the gradient 

extreamely small (dead unit), instead, the explicit constraint 

imposes some stability on the optimization procedure



Dataset Augmentation

◼ The best way to make a machine learning model generalize better is 

to train it on more data. However if it is difficult, we can create fake 

data and add it to the training set. This is called data augmentation

◼ In the image classification task, it is common to flip and rotate 

images 

◼ Since the neural network is not robust to noises, it is also common 

to inject noises to input. Noises are often added to hidden units to 

improve the robustness (Poole2014)

https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec



Noise Robustness

◼ For some models, the addition of noise with infinitesimal variance 

at the input of the model is equivalent to imposing a penalty on the 

norm of the weights (Bishop1995). In the general case, noise 

injection can be much more powerful than simply shrinking the 

parameters, especially when the noises are added to hidden units 

(e.g., dropout) 

◼ Another way that noise has been used is by adding it to the weights. 

Noise applied to the weights can be interpreted as equivalent to a 

more traditional form of regularization, encouraging stability of the 

function to be learned

◼ The training label is often incorrect. To improve the robustness of 

the model to the errors in the data, we may inject noise at the output 

target in the form of label smoothing (Salimans2016): by replacing 

the classification output (e.g., 1 to 0.7~1.2, 0 to 0 to 0.3)



Semisupervised Learning

◼ Both unlabeled examples from 𝑃 𝑥 and labeled examples from 

𝑃 𝑥, 𝑦 are used to estimate 𝑃 𝑦|𝑥 or predict 𝑦 from 𝑥

◼ In the context of deep learning, semisupervised learning usually 

refers to learning a representation ℎ = 𝑓(𝑥). The goal is to learn a 

representation so that examples from the same class have similar 

representations

https://www.researchgate.net/figure/The-structures-of-a-supervised-and-b-semisupervised-multimodal-deep-learning-for_fig1_301227188



Multitask Learning

◼ Multitask Learning (Caruana1993) is a way to improve 

generalization by pooling the examples arising out of several tasks

Shared weights over tasks

Different weights for different tasks

http://ruder.io/multi-task/



Early Stopping (1)

◼ Validation error generally begins rise after some iterations due to 

overfitting

◼ To avoid this, we can use early stopping, which can be seen as a 

very efficient hyperparameter selection algorithm (the number of 

training steps are also considered as hyperparameter)

◼ Early stopping is considered as a L2 regularizer when then number 

of steps is small (i.e., 𝛼 decreases as steps increases, see details in 

the book)



Early Stopping (2)



Early Stopping (3)

◼ First training with validation set to decide the number of steps. 

Then use all data to estimate the final parameters



Early Stopping (4)

◼ Another strategy is to keep the parameters obtained from the 

first round of training and then continue training, but now 

using all the data until it falls below the value of the training 

set objective at which the early stopping procedure halted



Parameter Tying and Parameter Sharing

Hard parameter sharing

(𝝎𝐴 = 𝝎𝐵 )
Soft parameter sharing

( 𝝎𝐴 −𝝎𝑩 ≤ 𝜖 )

http://ruder.io/multi-task/

◼ Assume we have model A with parameter 𝜔𝐴 and model B 

with parameter 𝜔𝐵. If we know the tasks are similar enough, 

we can leverage  this information to constrain the model 



Representational Sparsity

◼ We can place the penalty on the activations of the units in a 

neural network, encouraging their activations to be sparse

ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝒉)

ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝜽) Penalty on the parameter 

Penalty on the activation

Ω 𝒉 = 𝒉 1

◼ Other representational sparsity penalties include one derived 

from a Student t prior on the representation (Olshusen1996), 

KL divergence penalty (Larochelle2008), regularizing the 

average activation across several examples (Goodfellow2009) 

and orthogonal pursuit (Pati1993)  



Bagging and Other Ensemble Methods

◼ Bagging (short for bootstrap aggregating), model averaging or 

ensemble method is a technique for reducing generalization error 

by training several uncorrelated models separately, then have all 

the models vote on the output for test examples (Breiman1994). 

𝔼
1

𝑘


𝑖=1

𝑘

𝜖𝑖

2

=
1

𝑘
𝔼 𝜖𝑖

2 ∵ 𝔼 𝜖𝑖𝜖𝑗 = 0

Replacement 

from the original



Dropout (1)

◼ Dropout (Srivastava2014) trains the ensemble consisting of 

all subnetworks that can be formed by removing nonoutput 

units from an underlying base network. We can do it by simply 

multiplying output values of each unit by zero

◼ To train with dropout, we use a

minibatch-based learning algorithm

such as stochastic descent. Each

time we load an example into a

minibatch, we randomly sample

(𝑝dropout; e.g., 0.8 for input, 0.5

for hidden units) a different binary

mask to apply to all the input and

hidden units in the network



Dropout (2)



Dropout (3)

◼ Different from bagging, dropout shares the parameters among 

models, and each model differs slightly for each step. Beyond 

these dropout follows the bagging algorithm (e.g., the training 

set encountered by each subnetwork is indeed a subset of the 

original training set sampled with replacement)

https://cedar.buffalo.edu/~srihari/CSE676/7.12%20Dropout.pdf



Dropout (4)

◼ Prediction of the network with dropout

⚫ Arithmetic mean: the arithmetic mean of the probability 

distribution for each model with different mask (𝝁; 10-20 

masks practically) is given by:

⚫ Geometric mean: the unnormalized probability distribution 

defined directly by the geometric mean is given by

◼ Key insight is that with geometric mean, we can approximate 

𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 by evaluating 𝑝(𝑦|𝑥, 𝝁) in one model: the model with 

all units, but with the weights going out of unit i multiplied by the 

probability of including unit i (weight scaling inference rule)

𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙 =

𝝁

𝑝 𝝁 𝑝(𝑦|𝒙, 𝝁)

𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙 =
2𝑑

ෑ

𝝁

𝑝(𝑦|𝑥, 𝝁) 𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙 =
𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙

∑𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙

d is the number of units dropped



Dropout (5)

◼ Advantages of dropout is:

• Computationally cheap. O(n) computation per example per 

update to generate n random binary numbers and multiply them 

by the state. Depending on the implementation, but it generally 

requires O(n) memory to store those binary numbers

• It does not significantly limit the model or training procedure

◼ While the computationally efficient, we may need larger size of 

network to make the dropout work effectively. In addition, we may 

need sufficiently amount of training data for making dropout 

effective

◼ Another deep learning algorithm, batch normalization, 

reparametrizes the model in a way that introduces both additive 

and multiplicative Nosie (dropout is only multiplicative) on the 

hidden units at training time, often makes dropout unnecessary 



Adversarial Training

◼ Even neural networks have a nearly 100 percent error rate on 

examples 𝑥′ that are intentionally constructed so that they are close 

to 𝑥 but the model output is quite different. Those examples are 

called as adversarial examples

◼ Goodfellow analyzed this was caused by the highly linearity of the 

model (even with the nonlinear activation). To avoid this, the 

network should be trained with adversarial examples to assign the 

same label to 𝑥 and 𝑥′



Tangent Propagation

◼ Tangent propagation trains network so that the network outputs 

similar labels along the manifold that was manually specified

◼Working in similar manner with data augmentation or adversarial 

training (try to learn the function that does not change the output)

◼ For eliminating the need to know the tangent vectors a priori,  

manifold tangent classifier (Rifai2011) had been proposed taking 

advantages of autoencoder to estimate the manifold tangent vectors


