Fundamentals of
Media Processing
(Machine Learning Part)

Lecturer:

k¥ E— (Prof SATO Shinichi)

B 5 (Prof. IKEHATA Satoshi) 10/27,11/10,11/17,11/24,12/1,12/8
LiE NE— (Prof. Junichi Yamagishi)

IBE # (Prof. KODAMA Kazuya)

%= ¥ (Prof. MO Hiroshi)

Chapter 1-9 (out of 20)

An introduction to a broad
range of topics in deep
learning, covering
mathematical and conceptual
background, deep learning
techniques used in industry,
and research perspectives.

* Due to my background, | will
mainly talk about “image”

e | will introduce some
applications beyond this book

Deep Learning

An MIT Press book in preparation

fellow, Yoshua Bengio and Aaron Courville l P

Book Exercises External Links

Lectures

We plan to offer lecture slides accompanying all chapters of this book. We currently offer slides for
only some chapters. If you are a course instructor and have your own lecture slides that are
relevant, feel free to contact us if you would like to have your slides linked or mirrored from this
site.

1. Introduction
o Presentation of Chapter 1, based on figures from the book [.key] [Lpdf]
o Video of lecture by Ian and discussion of Chapter 1 at a reading group in San Francisco
organized by Alena Kruchkova
. Linear Algebra [.key][.ndf]
. Probability and Information Theory [.key][.pdf]
. Numerical Computation [.key] [.pdf] [youtube]
. Machine Learning_Basics [.key] [.pdf]
. Deep Feedforward Networks [.key] [.pdf]
o Video (.flv) of a presentation by Ian and a group discussion at a reading group at Google
organized by Chintan Kaur.
. Regularization for Deep Learning [.pdf] [.key]
8. Optimization for Training_Deep Models
o Gradient Descent and Structure of Neural Network Cost Functions [.key] [.pdf]
These slides describe how gradient descent behaves on different kinds of cost function
surfaces. Intuition for the structure of the cost function can be built by examining a
second-order Taylor series approximation of the cost function. This quadratic function can
give rise to issues such as poor conditioning and saddle points. Visualization of neural
network cost functions shows how these and some other geometric features of neural

N LM

~J

Free copy of the book and useful
materials are available at

https://www.deeplearningbook.or
g/lecture_slides.html

Schedule

10/27 (Today) Introduction Chap. 1

probability, information theory, numerical computation Chap. 2,3,4

11/10 Machine Learning Basics Chap.5
11/17,11/24,12/1 Deep Feedforward Networks Chap. 6
Regularization and Deep Learning Chap. 7

Optimization for Training Deep Models chap.8

12/8 Convolutional Neural Networks Chap. 9 and more

Convolutional Neural Networks

History of Convolutional Neural Networks

B 1990s, the neural network research group at AT & T developed
a convolutional network for reading checks (LeCun1998)

B Several OCR and handwriting recognition systems based on
CNN were deployed by Microsoft (Simard2003)

B AlexNet (2012) won the ImageNet object recognition
challenge, and the current intensity of commercial interest in
deep learning began

140 —
120
100
80
60

40 @
20
— £ & @ @ = = L=

0
2010 2011 2012 2013 2014 2015 2016 2017 2018

of Papers with “Deep” in CVPR

|

Convolutional Neural Networks (1)

B Convolutional Neural networks (CNN; LeCun1989) are a neural
network for processing data of gild-like structure. The major
examples include image data

B CNN are simply neural networks that use convolution in piece of
general matrix multiplication in at least one of their layers. In
general convolution, the kernel is flipped, but in neural networks,
It does not matter since the kernel itself is learned

B The multichannel convolutional operations requires that the input
and output of the convolution have same channels to make the
convolution commutative; In reality, what CNN do is cross

correlation rather than convolution SilTle] [a
0|0 1|1
S@H=UK)@) =Y Y 1G+m,i+mKG)) e T
m n 0O(1(1/0]|0
Cross correlation based on the Image ESSQ’JiZ’“

. - : https://cdn-images-
CommUtatlve property In ConVOIUtlon 1.medium.com/max/1600/1*ZCjPUFrB6eH

PRideyP6aaA.gif

Convolutional Neural Networks (2)

B CNN leverages three important ideas
@® Sparse interactions
- Each unit is interacted with smaller number of units

Standard NN

® Parameter sharing

- Traditional neural net— dense multiplication (y = Wx)

- We only need few parameters (# of kernel x size of kernel)
® Equivariant to translation

- flg) = g(fF ()

- “translation then convolution” is same with “convolution,

then translation”
- CNN is not naturally equivalent to rotation and scale

Convolutional Neural Networks (3)

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on
the left. This shows the strength of all the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide, while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 x 280 x 3 = 267,960 floating-point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 x 280 x 319 x 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating-point operations to compute.
The matrix would still need to contain 2 x 319 x 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small local region across the entire input. Photo credit: Paula
Goodfellow.

CNN and Neuroscience (1)

WHAT

Areas

Inferotemporal

WHERE

Parietal
Areas

MT
o0 L /éi/ 00 L =
[I
V2 Thin ||V2 Interstripe V2 Thick
V1 Blob || V1 Interblob V1 4B |
P 00 L _PE o L -
LGN Parvo LGN Magno
| 1
Retina

https://www.researchgate.net/figure/Schematic-diagram-of-
anatomical-connections-and-neuronal-selectivities-of-early-
visual_figl5 268228820

Parietal
lobe

oy

N

Temporal
lobe

Dorsal pathway (spatial location and action)

E 'l

Vi

V4 V2

')_—/

N

‘Ventral pathway (characteristics of objects)

https://www.intechopen.com/books/visual-cortex-current-status-and-
perspectives/adaptation-and-neuronal-network-in-visual-cortex

CNN and Neuroscience (2)

W V1 cells have weights that are described by Gabor functions that
prefers the specific direction of edges

ddESSSKSE [N NN Donono
ddd=ESSSNK NN

AAdd=ESNRNRN
HAAZSNNN
(O K AN S 22 W2
NNNSEZVu
NNSSEE2Pv
SNS=EEEEP

Example of the CNN

B Typical convolutional neural networks consist of convolution,
pooling, and fully-connected layers

C3: f. maps 16@10x10

INPUT C1: feature maps S54: . maps 16@5x5
6@28x28
S2: f. maps

32x32
6@14x14

CS: layer pg. OUTPUT
120 I;Ei layer 1

|
Full conrgectinn ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Pooling (1)

B A pooling function replaces the output of the net at a certain
location with a summary statistic of the nearby outputs
® Max pooling: the maximum within a rectangular neighborhood
® Average pooling: the mean within a rectangular neighborhood

B Pooling encourages the network to learn the invariance to small
translations of the input

B For many tasks, pooling is essential for handling inputs of varying
size (varying the size of an offset between pooling regions so that
the final output layer always receives the same number of
summary statistics regardless of the input size)

121 20§30| O
20 || 30 13 || 8
8 11242 | O
34| 701 37| 4 112 | 37 79 | 20

112(100| 25 | 12 Max pooling Average pooling

Pooling (2)

B Boureau2010 (mentioned in image classification task):

“Depending on the data and features, either max or average pooling
may perform best. The optimal pooling type for a given classification
problem may be neither max nor average pooling”

g o ol 0 Smallest cardinality 1024 512 256
3 | 8, s et Caltech 101 [Avg, One |32.4+1.1[31.3+£1.0[286 £ 1.1
"R o oo S Avg, Joint 31.9+1.2(321+1.2
%i‘ "’“x;‘” —r— %i ; e Max,One | 31.7+ 1.4 |32.7+1.3| 304 +2.3
Parameter P, Log scale Parameter P, Log scale MaX, JOiIlt 344 :l: 07 358 :I: 09
(a) 128 codewords (b) 256 codewords gﬁ %i]st 37.9+0.6 égi i ?g 44%3 i ;g
Average — Max I5 Scenes | Avg, One |69.8 £ 0.7 |68.7 £0.8] 66.3 £ 0.7
Avg, Joint 69.6 £0.7169.2 £ 1.0
o] . A A-A o] Max, One | 63.5 0.6 |64.8 = 0.7(64.3 0.4
-2 LICIN B 3 o Max, Joint 65.4 £0.6|67.1 £0.6
5 P S| SM.One |[67.2X08]|704+0.7|72.6 0.7
& © O # 8 e 2 SM, Joint 69.2 £0.7| 70.7 £ 0.7
o o = N
12 5 10 2o i 2 Bé i 2o
Parameter P, Log scale Parameter P, Log scale

(c) 512 codewords (d) 1024 codewords

Pooling (3)

B An infinitely strong prior places zero probability on some
parameters and says these parameter values are completely
forbidden. We can imagine CNN as being similar to a fully
connected net but with an infinitely strong prior over its weights
(e.g., translation invariance) and without some priors in standard
neural network (e.g., permutation invariance)

B Convolution and pooling can cause underfitting. If a task relies
on preserving precise spatial information, then using pooling
on all features can increase the training error. Some CNN
therefore uses pooling on some specific channels
(Szegedy2014) in order to get both highly invariant features
and features that will not underfit when the translation
Invariance prior is incorrect

Variance of the Basic Convolution Function (1)

B The convolution function used in CNN and the standard discrete
convolution operation is usually different
« The convolution in CNN is an operation that consists of
many applications of convolution in parallel to extract many
Kinds of features at many locations
« The input and output are grid of vector-valued observations
(I.e., 3-D tensors; e.g., RGB image)

B Stride: We may want to skip over some positions of the kernel
to reduce the computational cost. We can define a downsampled
convolution function with stride as

i: output channel j: offset of rows

7. = z N ¢ .
Lk Vijrm-tiesn-1Kitmn l: input channel k: offset of columns

lmn
_ Downsampled convolution
Zi,j,k - Vl,(j—1)*s+m,(k—1)*s+nKi,l,m,n with stride (S)
lmn
It is more common to firstly apply conv with stride = 1 and then apply pooling with e.g., stride= 2
rather than applying strided convolution (not for the computational cost)

Variance of the Basic Convolution Function (2)

B To avoid shrink of the output size after the convolutlon ‘We can
do zero padding of the input V to make it wider & :

« valid convolution: The output size shrinks s
« same convolution: The output size Is same with the mput

M Tiled convolution (Gregor2010): offers a compromise between
a convolutional layer and a locally connected layer (learning a
separate set of weights at every spatial location to emphasize the
local information). We learn a set of kernels that we rotate
through as we move through space, which implies that we use
different kernels at different locations. (# params, standard < tiled < full)

B To back-propagate the convolution layer, we can simply see the
convolution operation as a (sparse) matrix multiplication. As for
the bias, it Is typical to have one bias per channel of the output
and share It across all locations (for tiled convolution, across
same tiling patterns as the kernels)

Learning A Simple Convolutional Neural Networks

B Suppose we want to train a convolutional network that
Incorporates strided convolution of kernel stack K applied to
multichannel image V with stride s

B Suppose the loss functionis J(V, K).
 During the back propagation, we will receive a tensor G

such that Gijx = aza J(V,K) (Z is the output of the convolution).
i,jk

 To train the network we need to compute the derivatives
with respect to the weights in the kernel:

oK](V; K) — Z Gi,m,an,(m—1)*s+k,(n—1)*s+l
i,jk,l —

« \We may need to compute the gradient with respect to the

hidden layer V,

d
aVi,j,k

JV,K) = z z KqimpGain
Im(s.t.(I-1)*s+m=j) n,p (s.t.(n—-1)*s+p=k

Structured Outputs

B Convolutional networks can be used to output a high-
dimensional structured object (e.g., semantic segmentation)

B The issue Is the output dimension can be smaller then input due to
the pooling layers with large stride. To overcome this issue:
a. Produce an initial guess at low resolution, then refine it using
graphical model such as CRF/MRF
b. Use upsampling/unpooling layer to increase the output size

Labal Aulcencoder i
N) : Decoder "\
= . R
s l
coder Dacoder :
|

Labels {input) Encod Labels (Output) Aandliary Output

Primary Ouiput

RGOSR /' '

redict

=t

R P

Data Types

B One advantage to fully-convolutional neural networks is that
they can process inputs with varying size of images in
training/test data (note that valid for only spatial variation)

B If we put the dense layer with convolution layer (e.g., for
assigning label to an entire image), we need some additional
design steps, like inserting a pooling layer whose pooling
regions scale in size proportional to the size of the input to
maintain a fixed number of pooled outputs

()
forward /inference

backward/learning

21

Long et al., “Fully convolutional networks for semantic segmentation”, In CVPR2015

Single channel

Multichannel

1-D

Audio waveform: The axis we
convolve over corresponds to
time. We discretize time and
measure the amplitude of the
waveform once per time step.

Skeleton animation data: Anima-
tions of 3-D computer-rendered
characters are generated by alter-
ing the pose of a “skeleton” over
time. At each point in time, the
pose of the character is described
by a specification of the angles of
cach of the joints in the charac-
ter’s skeleton. Each channel in
the data we feed to the convolu-
tional model represents the angle
about one axis of one joint.

2-D

Audio data that has been prepro-
cessed with a Fourier transform:
We can transform the audio wave-
form into a 2-D tensor with dif-
ferent rows corresponding to dif-
ferent frequencies and different
columns corresponding to differ-
ent points in time. Using convolu-
tion in the time makes the model
equivariant to shifts in time. Us-
ing convolution across the fre-
quency axis makes the model
equivariant to frequency, so that
the same melody played in a dif-
ferent octave produces the same
representation but at a different
height in the network’s output.

Color image data: One channel
contains the red pixels, one the
green pixels, and one the blue
pixels.
moves over both the horizontal

The convolution kernel

and the vertical axes of the im-
age, conferring translation equiv-
ariance in both directions.

3-D

Volumetric data: A common
source of this kind of data is med-
ical imaging technology, such as
CT scans.

Color video data: One axis corre-
sponds to time. one to the height
of the video frame, and one to
the width of the video frame.

Obtaining Kernels without Supervised Training

B The forward/backward propagation for the supervised training
of CNN is time consuming. One way to reduce the cost of
convolutional neural network training is to use features that are
not trained In a supervised fashion

B One is to Initialize them randomly (e.g., Jarrett2009), another is
to design them by hand (e.g., edge detector). Finally, one can
learn the kernels with an unsupervised criterion (e.g.,
Coates2011 applied k-means clustering to small image patches
then use each learned centroid as convolution kernel)

B A greedy layer-wise pretraining (e.g., Lee2009) train the first
layer in isolation, then extract all features from the first layer
only once then train the second layer in isolation and so on.

B Today, it is common to learn the CNN in purely supervised manner

Preprocessing

B In computer vision applications, images should be standardized so
that their pixels all lie in the same reasonable range (e.g., [0,1]).
Mixing different ranges results in failure. The common procedure
IS to subtract the mean from each image and divide it by std (global
contrast normalization) or do it per local region (local contrast
normalization). The result is the image of zero-mean and one-std

B The images should have the same aspect ratio (generally square)
achieved by clopping and scaling

—

Q‘\ = G
“ “
j
-

RN
N

Input image GCN

LCN

Design of the

Hyperparameters in CNN

Hyperparameter | Increases | Reason Caveats
capacity
when. ..
Number of hid-| increased | Increasing the number of | Increasing the number

den units

hidden units increases the
representational capacity
of the model.

of hidden units increases
both the time and memory
cost of essentially every op-
eration on the model.

Learning rate

tuned op-
timally

An improper learning rate,
whether too high or too
low, results in a model
with low effective capac-
ity due to optimization fail-
ure.

Convolution ker-
nel width

increased

Increasing the kernel width
increases the number of pa-
rameters in the model.

A wider kernel results
in a narrower output di-
mension, reducing model
capacity unless you use
implicit zero padding to
reduce this effect. Wider
kernels require more mem-
ory for parameter storage
and increase runtime, but
a narrower output reduces
memory cost.

Implicit zero
padding

increased

Adding implicit zeros be-
fore convolution keeps the
representation size large.

Increases time and mem-
ory cost of most opera-
tions.

Weight decay co-
efficient

decreased

Decreasing the weight de-
cay coefficient frees the
model parameters to be-
come larger.

Dropout rate

decreased

Dropping units less often
gives the units more oppor-
tunities to “conspire” with
each other to fit the train-
ing set.

Table 11.1: The effect of various hyperparameters

on model capacity.

Applications of CNN

Image Classification

B ImageNet Large Scale Visual Recognition Competition
(ILSVRC): 1.2M for training, 150K for test.

B Object localization for 1000 categories, object detection for 200
categories, object detection from video for 30 categories

Inception-v4
80 - _
Inception-v3 ’ : ResNet-152
ResNet-50 . 5 VGG-16 VGG-19
75 1 ResNet-101
. ResNet-34
E 70 ﬁ, ResNet-18
=
@ GuogLeNet
3 ENEt
H 65
;{-}; o BN-NIN
F 604 5M 3I5M 65M 95M 125M 155M
BM-AlexMet
55 AlexNet
50 : r v : r ¥ ' T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

swailMLSVRALC 20

-~y ! F
3 -

23:giant pand.
t.

LeNet and Its Variance

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28

S2: f. maps

2 6@14x14 rr rl_
r
o

C5: layer cg. OUTPUT
120 I;(i layer 1

[
| Fullccnrkecliun ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

LeNet (LeCun1998)

2 w2243 224 % 224 x G4

5
b3 d dens
3 3 B darse 112 % 128
1
3 ’) : 3 " 7 4 5l 56 x 256
¥ s 7 S o s 7 28 2 28 % 512 TxTx512
o tnout i { £ |18 18 H12 1154096 11 % 1000
mege " 384 1 S5 1900 ;I '
(RGS) A
= ing 4096 4096
Mae . pooling

() convolution+ReL.U
) max poaling

/ 5 fully connected+HRel1I
/ [softmax

VGG-Net (Simonyan2014)
16 layers

2" ranked at ILSVRC2014
Only using 3x3 convolution
- Similar to AlexNet but more filters
- The pretrained weight is publicly available

Alex-Net (Krizhevsky2012)

8 layers

- Deeper, with more filters per layer, max
pooling, dropout, data augmentation, ReLu
activation, SGD with momentum (9%
improvement in accuracy from the last year’s
challenge)

GooglLeNet and Inception Module

B Google-Net (Segedy2014): Won ILSVRC2014 (22 Layers)
B 1x1 convolution is used as a dimension reduction

B Global average pooling is introduced by averaging feature map
from 7x7 to 1x1 to remove the weights for FCN layers

reduce channel depth

DepthConcat

[J=

nv nv v
1x1+1(S) 3x3+1(S) 5x5+1(S)

5x5 Fully connected Global Average pooling
g 48 , / t# 1
iy 14x14x480 14x14x48 : ; — 1
1x%1+1(S)

1024

1x1 5x5 7 ;
mp)
16 48 1024

14x14%480 14x14x16 14x14x48

Conv Conv
1x1+1(S) 1x1+1(S) 3x3+1(S)

Inception module

https://medium.com/coinmonks/paper-review-of-googlenet-inception-vl-winner-of-ilsvic-2014-image-classification-c2b3565a64e7

Deep Residual Networks

B ResNet (He2015): Won ILSVRC2015 (152 layers)

B Basic concept 1s “More Layers 1s Better”

B To avoid vanishing gradient problem, the residual function
H(x) = F(x) + x is introduced which allows the gradient being
rapidly propagated through the network when applying backprop

X

A A

weight layer

F(x) Jrel

X
identity

weight layer

34-layer residual

Densely Connected Convolutional Networks

B DenseNets (Huang2017): introduces direct connections between
any two layers with the same feature-map size. The idea behind is
“1t may be useful to reference feature maps from earlier in the

29
network
1x1
Input 1x1 1x1
Prediction
o Dense Block 1 S Dense Block 2 o Dense Block 3
' 5 5 Q) ‘horse”

B DenseNets require substantially fewer parameters and less
computation to achieve state-of-the-art performance

——— 7.5¢ v v T — —

| —*— ResNets —a— ResNets
4ResNet-34 | —— DenseNets-BC 265 4 ResNet-34 —4— DenseNets-| BC||
\ = - .51 \ ¢ = |

validation error (%)
n n

05 075 1 1256 15
#parameters x10° #Hops %1
Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop
testing) on the ImageNet validation dataset as a function of learned parameters (lefr)

and FLOPs during test-time (right).

Object Detection (1)

B Object detection task in the context of deep neural networks asks
“where the object 1s” as well as “what is the object”

From Liu2014

Object Detection (2)

B Regions with Convolutional Neural Networks (R-CNN;
Girshick2013): (a) extract region proposals (b) where CNN is
applied for extracting features, (c) which are then classified using
SVM, (d) then bounding box regression is applied

B The original R-CNN introduces selective search (hierarchical
grouping) for region extraction: (a) initial candidate regions, (b)
use greedy algorithm to merge similar regions into larger one

R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. lnput 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

R-CNN workflow

Object Detection (3)

B Problems in R-CNN:
« It trains classification/bounding box regression independently,
therefore it takes large time to train the network and cannot
be real time in test (47sec for one image)

B Fast R-CNN (Girshick2015): (a) Firstly, extracting features from
an entire image and then using Rol projection to extract features
at each region. (b) classification/bounding box regression are
trained simultaneously using the multi-task loss

Outputs: bb oX .
i Test time (seconds)
softmax regressor Training time (Hours) N Including Region propos... I Exclucing Region Propo

SPP-Net
Fast R-CNN . 8.75
0

Rol
pooling

Rol feature
vector For each Rol

Fast R-CNN

25 50 75 100

Object Detection (4)

B Problems in Fast R-CNN:
e |t still requires the time-consuming region proposal
extraction, therefore the framework is not actually end-to-end

B Faster R-CNN (Ren2015): introduced the region proposal
network to learn the extraction of region proposal which allows
an end-to-end learning (5fps on GPU)

classifier
2k scores 4k coordinates «@mm Kkanchor boxes '
cls layer - reg lay.er —.— Rol pooling
\ ’ 3 — R-CNN Test-Time Speed
2564 . proposals / 7
intermediate layer / p R-CNN
t o Region Proposal Networ SPP-Net
”mm Py Fast R-CNNJl 2.3
Faster R-CNN| 0.2
sliding window = . . " N
conv feature map : cony layers /
Y|

L 77

bus - 0.965

= traffic light - 0 866

traffic light - 0 887 LT) L BRI ous - 0.807

person

Obiject detection in the wild by Faster R-CNN + ResNet-101

https://www.youtube.com/watch?v=WZmSMkK9VuA

Object Detection (5)

B YOLO (You Only Look Once; Redmon2016): unlike previous
algorithms that are “proposal extraction + classification”, YOLO
uses a single CNN to predicts the bounding boxes and the class
probabilities for the box (use information outside the local region)

B YOLO takes an image and split it into grid, within each of the
grid bounding boxes are taken. The bounding boxes whose class
probability is above a threshold is selected to locate the object

B 2x faster but less accurate than Faster R- CNN It is also weak for
small objects

YOLO v2: 2017/12 w/ BN 224px -> 448px

YOLO v3: 2018/04 w/ multi-class, New arc.

YOLO v4: 2020/04 implemented by different people
YOLO v5: 2030/06 implemented by different people

S x S grid on input Final detections

Class probability map

https://www.youtube.com/watch?v=V4P_ptn2FF4

Object Detection (6)

Feature map (10x15)

B Mask R-CNN (He2017):

* Solved the “subpixel shift”
problem in Faster R-CNN by
bilinear interpolation

» Can also predict object masks N N

Region proposal

Mask R-CNN Faste R-CNN

Pa box box

X classification classification
regression regressi on
L Sl ; Sally cokaectad
head< layers ? o layers
!_—— fixed size feature map
RoIPool layer

——~ feature map

———— fixed size feature map

-~ RoIAlign layer

—— feature map '

—— convolutional backbone - convolutional backbone

Curtis Kim, kakao, https:/ /www.slideshare.net/lldooKim/ deep-object-detectors-1-20166

Semantic Segmentation (1)

B Semantic segmentation task is to predict a pixel-wise instance
label corresponding to an input image or vide frames

B VOC2012 and MSCOCO are important benchmark datasets

B Unlike other CNN tasks, the output is structured (e.g,. image)

SegNet: https://www.youtube.com/watch?v=CxanE_W46ts

Semantic Segmentation (2)

B The standard strategy is to use the encoder-decoder architecture

32x upsampled
convl pooll conv2 pool2 conv3 pool3 convd poold convd poold convB-T predicti 'CN-32s)

forward /inference

backward/learning e
!I:V conv?
4x conv?
2xpoold [[[|
pool3 | JJ |l

224x224

Unpooling Unpooling

_*x-linpffilinpoolmg : N O Ski p

e connection

Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multi-
layer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from
the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and

rectification operations. DeconvNet (N0h2015)

Semantic Segmentation (3)

B Unpooling: the reverse operation of max pooling. It recodes the
locations of maximum activations selected during pooling operation
In switch variables, which are employed to place each activation
back to its original pooled location

B Deconvolution (transposed convolution): densify the sparse
activations obtained by unpooling through convolution-like
operations with multiple learned filters

switch switch

variables Q g variables

pooled

Pooling Unpooling

unpooled
map

Convolution Deconvolution

Semantic Segmentation (5)

B Skip connection is a very powerful tool to keep the original
resolution and propagate loss effectively in back propagation

Input

RGB Image

input
image
tile

Convolutional Encoder-Decoder

Output

Pooling Indice:

- Conv + Batch Normalisation + RelU Segme ntation
-P oling [Upsampling Softmax

Seg -Net (Badrlnarayanan2015) w/ class balancing

output
segmentation
map

128 64 64 2

’J.Jt
o o o
@ o &
il off o o
=]
o o @
= of @
all o ol o

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
f up conv 2x2
v 1x1

U-Net (Ronneberger2015) w/ welghted loss on boundary

Semantic Segmentation (6)

B Other than the encoder-decoder like net, we can use the dilated
convolution (Yu2015) without using pooling to keep the original
resolution

Conv Conv Conv
kernel: 3x3 kernel: 3x3 kernel: 3x3
rate: 1 rate: 6 rate: 24
rate = 24
G
- rate = 6
rate=1 e

B>

Feature map Feature map Feature map
| Layer | 1 | 2 | 3 | 4 | 5 [6 [7 [8 |
Convolution 3Ix3 | 3x3 | 3x3 3x3 3Ix3 3x3 3x3 1x1
Dilation 1 1 2 4 8 16 1 1
Truncation Yes Yes Yes Yes Yes Yes Yes No

Receptive field | 3x3 | 5x5 | 9x9 | 17x17 | 33x33 | 65x65 | 6767 | 6

Tx 67

Output channels

Basic C C C C C C C

Large 2C 2C 4C 8C 16C 32C 32C

C
C

https://github.com/vdumoulin/conv_arithmetic

Other Topics

B CNN on 3-D Data (point cloud, voxels, meshes)
® Differentiable Renderer, Single image 3-D reconstruction

B Graph Neural Networks
® Holistic vision

B Self-supervised / Unsupervised Learning, Domain Adaptation
® Deep learning with few training samples

B Generative Networks (e.g., GAN, Transformer)
® Deep fake, StyleGAN

B Multi-modal Neural Networks (e.g., Image + Text)
® Deep image captioning

B Deep Reinforcement Learning
® c.g., AlphaGO

B Recurrent Neural Networks (next weak)

