
Fundamentals of
Media Processing

(Machine Learning Part)

Lecturer:
佐藤 真一（Prof. SATO Shinichi）
池畑 諭（Prof. IKEHATA Satoshi）10/27, 11/10, 11/17, 11/24, 12/1, 12/8
山岸 順一（Prof. Junichi Yamagishi）
児玉 和也（Prof. KODAMA Kazuya）
孟 洋（Prof. MO Hiroshi）

An introduction to a broad

range of topics in deep

learning, covering

mathematical and conceptual

background, deep learning

techniques used in industry,

and research perspectives.

Chapter 1-9 (out of 20)

• Due to my background, I will
mainly talk about “image”

• I will introduce some
applications beyond this book

https://www.deeplearningbook.or
g/lecture_slides.html

Free copy of the book and useful
materials are available at

10/27 (Today)

probability, information theory, numerical computation

11/10

11/17, 11/24, 12/1

Regularization and Deep Learning

Optimization for Training Deep Models

12/8

Chap. 2,3,4

Chap. 1

Chap. 5

Chap. 6

Chap. 7

Chap. 8

Chap. 9 and more

Machine Learning Basics

Introduction

Deep Feedforward Networks

Schedule

Convolutional Neural Networks

Convolutional Neural Networks

History of Convolutional Neural Networks

◼ 1990s, the neural network research group at AT & T developed

a convolutional network for reading checks (LeCun1998)

◼ Several OCR and handwriting recognition systems based on

CNN were deployed by Microsoft (Simard2003)

◼ AlexNet (2012) won the ImageNet object recognition

challenge, and the current intensity of commercial interest in

deep learning began

0

20

40

60

80

100

120

140

2010 2011 2012 2013 2014 2015 2016 2017 2018

of Papers with “Deep” in CVPR

https://cdn-images-
1.medium.com/max/1600/1*ZCjPUFrB6eH
PRi4eyP6aaA.gif

Convolutional Neural Networks (1)

◼ Convolutional Neural networks (CNN; LeCun1989) are a neural

network for processing data of gild-like structure. The major

examples include image data

◼ CNN are simply neural networks that use convolution in piece of

general matrix multiplication in at least one of their layers. In

general convolution, the kernel is flipped, but in neural networks,

it does not matter since the kernel itself is learned

𝑆 𝑖, 𝑗 = 𝐼 ∗ 𝐾 𝑖, 𝑗 =

𝑚

𝑛

𝐼 𝑖 + 𝑚, 𝑖 + 𝑛 𝐾(𝑖, 𝑗)

Cross correlation based on the

commutative property in convolution

◼ The multichannel convolutional operations requires that the input

and output of the convolution have same channels to make the

convolution commutative; In reality, what CNN do is cross

correlation rather than convolution

◼ CNN leverages three important ideas

⚫ Sparse interactions

- Each unit is interacted with smaller number of units

⚫ Parameter sharing

- Traditional neural net→ dense multiplication (𝑦 = 𝑊𝒙)

- We only need few parameters (# of kernel × size of kernel)

⚫ Equivariant to translation

- 𝑓 𝑔 𝑥 = 𝑔(𝑓(𝑥))

- “translation then convolution” is same with “convolution,

then translation”

- CNN is not naturally equivalent to rotation and scale

CNNStandard NN

Convolutional Neural Networks (2)

Convolutional Neural Networks (3)

CNN and Neuroscience (1)

https://www.researchgate.net/figure/Schematic-diagram-of-
anatomical-connections-and-neuronal-selectivities-of-early-
visual_fig15_268228820

https://www.intechopen.com/books/visual-cortex-current-status-and-
perspectives/adaptation-and-neuronal-network-in-visual-cortex

CNN and Neuroscience (2)

◼ V1 cells have weights that are described by Gabor functions that

prefers the specific direction of edges

Feature maps learned by CNN

Example of the CNN

◼ Typical convolutional neural networks consist of convolution,

pooling, and fully-connected layers

Pooling (1)

◼ A pooling function replaces the output of the net at a certain

location with a summary statistic of the nearby outputs

⚫ Max pooling: the maximum within a rectangular neighborhood

⚫ Average pooling: the mean within a rectangular neighborhood

12 20 30 0

8 12 2 0

34 70 37 4

112 100 25 12

20

112

30

37

13

79

8

20

Max pooling Average pooling

◼ Pooling encourages the network to learn the invariance to small

translations of the input

◼ For many tasks, pooling is essential for handling inputs of varying

size (varying the size of an offset between pooling regions so that

the final output layer always receives the same number of

summary statistics regardless of the input size)

Pooling (2)

◼ Boureau2010 (mentioned in image classification task):

“Depending on the data and features, either max or average pooling

may perform best. The optimal pooling type for a given classification

problem may be neither max nor average pooling”

Average Max

◼ An infinitely strong prior places zero probability on some

parameters and says these parameter values are completely

forbidden. We can imagine CNN as being similar to a fully

connected net but with an infinitely strong prior over its weights

(e.g., translation invariance) and without some priors in standard

neural network (e.g., permutation invariance)

◼ Convolution and pooling can cause underfitting. If a task relies

on preserving precise spatial information, then using pooling

on all features can increase the training error. Some CNN

therefore uses pooling on some specific channels

(Szegedy2014) in order to get both highly invariant features

and features that will not underfit when the translation

invariance prior is incorrect

Pooling (3)

Variance of the Basic Convolution Function (1)

◼ The convolution function used in CNN and the standard discrete

convolution operation is usually different

• The convolution in CNN is an operation that consists of

many applications of convolution in parallel to extract many

kinds of features at many locations

• The input and output are grid of vector-valued observations

(i.e., 3-D tensors; e.g., RGB image)

◼ Stride: We may want to skip over some positions of the kernel

to reduce the computational cost. We can define a downsampled

convolution function with stride as

𝑍𝑖,𝑗,𝑘 =

𝑙,𝑚,𝑛

𝑉𝑙,𝑗+𝑚−1,𝑘+𝑛−1𝐾𝑖,𝑙,𝑚,𝑛
𝑖: output channel

𝑙: input channel

𝑍𝑖,𝑗,𝑘 =

𝑙,𝑚,𝑛

𝑉𝑙, 𝑗−1 ∗𝑠+𝑚, 𝑘−1 ∗𝑠+𝑛𝐾𝑖,𝑙,𝑚,𝑛
Downsampled convolution

with stride (s)

𝑗: offset of rows

𝑘: offset of columns

It is more common to firstly apply conv with stride = 1 and then apply pooling with e.g., stride= 2

rather than applying strided convolution (not for the computational cost)

Variance of the Basic Convolution Function (2)

◼ To avoid shrink of the output size after the convolution, we can

do zero padding of the input V to make it wider

• valid convolution: The output size shrinks

• same convolution: The output size is same with the input

◼ Tiled convolution (Gregor2010): offers a compromise between

a convolutional layer and a locally connected layer (learning a

separate set of weights at every spatial location to emphasize the

local information). We learn a set of kernels that we rotate

through as we move through space, which implies that we use

different kernels at different locations. (# params, standard < tiled < full)

◼ To back-propagate the convolution layer, we can simply see the

convolution operation as a (sparse) matrix multiplication. As for

the bias, it is typical to have one bias per channel of the output

and share it across all locations (for tiled convolution, across

same tiling patterns as the kernels)

Learning A Simple Convolutional Neural Networks

◼ Suppose we want to train a convolutional network that

incorporates strided convolution of kernel stack 𝐾 applied to

multichannel image 𝑉 with stride s

◼ Suppose the loss function is 𝐽(𝑉, 𝐾).
• During the back propagation, we will receive a tensor G

such that

• To train the network we need to compute the derivatives

with respect to the weights in the kernel:

• We may need to compute the gradient with respect to the

hidden layer V,

𝜕

𝜕𝐾𝑖,𝑗,𝑘,𝑙
𝐽 𝑉, 𝐾 =

𝑚,𝑛

𝐺𝑖,𝑚,𝑛𝑉𝑗, 𝑚−1 ∗𝑠+𝑘, 𝑛−1 ∗𝑠+𝑙

𝐺𝑖,𝑗,𝑘 =
𝜕

𝜕𝑍𝑖,𝑗,𝑘
𝐽(𝑉, 𝐾) (Z is the output of the convolution).

𝜕

𝜕𝑉𝑖,𝑗,𝑘
𝐽 𝑉, 𝐾 =

𝑙,𝑚 (s.t. 𝑙−1 ∗𝑠+𝑚=𝑗)

𝑛,𝑝 (s.t. 𝑛−1 ∗𝑠+𝑝=𝑘

𝐾𝑞,𝑖,𝑚,𝑝𝐺𝑞,𝑙,𝑛

Structured Outputs

◼ Convolutional networks can be used to output a high-

dimensional structured object (e.g., semantic segmentation)

◼ The issue is the output dimension can be smaller then input due to

the pooling layers with large stride. To overcome this issue:

a. Produce an initial guess at low resolution, then refine it using

graphical model such as CRF/MRF

b. Use upsampling/unpooling layer to increase the output size

Data Types

◼ One advantage to fully-convolutional neural networks is that

they can process inputs with varying size of images in

training/test data (note that valid for only spatial variation)

◼ If we put the dense layer with convolution layer (e.g., for

assigning label to an entire image), we need some additional

design steps, like inserting a pooling layer whose pooling

regions scale in size proportional to the size of the input to

maintain a fixed number of pooled outputs

Long et al., “Fully convolutional networks for semantic segmentation”, In CVPR2015

Obtaining Kernels without Supervised Training

◼ The forward/backward propagation for the supervised training

of CNN is time consuming. One way to reduce the cost of

convolutional neural network training is to use features that are

not trained in a supervised fashion

◼ One is to initialize them randomly (e.g., Jarrett2009), another is

to design them by hand (e.g., edge detector). Finally, one can

learn the kernels with an unsupervised criterion (e.g.,

Coates2011 applied k-means clustering to small image patches

then use each learned centroid as convolution kernel)

◼ A greedy layer-wise pretraining (e.g., Lee2009) train the first

layer in isolation, then extract all features from the first layer

only once then train the second layer in isolation and so on.

◼ Today, it is common to learn the CNN in purely supervised manner

Preprocessing

◼ In computer vision applications, images should be standardized so

that their pixels all lie in the same reasonable range (e.g., [0,1]).

Mixing different ranges results in failure. The common procedure

is to subtract the mean from each image and divide it by std (global

contrast normalization) or do it per local region (local contrast

normalization). The result is the image of zero-mean and one-std

◼ The images should have the same aspect ratio (generally square)

achieved by clopping and scaling

Design of the Hyperparameters in CNN

Applications of CNN

Image Classification

◼ ImageNet Large Scale Visual Recognition Competition

(ILSVRC): 1.2M for training, 150K for test.

◼ Object localization for 1000 categories, object detection for 200

categories, object detection from video for 30 categories

LeNet and Its Variance

Alex-Net (Krizhevsky2012)

VGG-Net (Simonyan2014)
8 layers

16 layers

LeNet (LeCun1998)

8 layers

- Deeper, with more filters per layer, max

pooling, dropout, data augmentation, ReLu

activation, SGD with momentum (9%

improvement in accuracy from the last year’s

challenge)

- 2nd ranked at ILSVRC2014

- Only using 3x3 convolution

- Similar to AlexNet but more filters

- The pretrained weight is publicly available

GoogLeNet and Inception Module

◼ Google-Net (Segedy2014): Won ILSVRC2014 (22 Layers)

◼ 1x1 convolution is used as a dimension reduction

https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7

Inception module

◼ Global average pooling is introduced by averaging feature map

from 7x7 to 1x1 to remove the weights for FCN layers

Deep Residual Networks

◼ ResNet (He2015): Won ILSVRC2015 (152 layers)

◼ Basic concept is “More Layers is Better”

◼ To avoid vanishing gradient problem, the residual function

𝐻 𝑥 = 𝐹 𝑥 + 𝑥 is introduced which allows the gradient being

rapidly propagated through the network when applying backprop

1x1 1x1 1x1

Densely Connected Convolutional Networks

◼ DenseNets (Huang2017): introduces direct connections between

any two layers with the same feature-map size. The idea behind is

“it may be useful to reference feature maps from earlier in the

network”

◼ DenseNets require substantially fewer parameters and less

computation to achieve state-of-the-art performance

Object Detection (1)

◼ Object detection task in the context of deep neural networks asks

“where the object is” as well as “what is the object”

From Liu2014

Object Detection (2)

◼ Regions with Convolutional Neural Networks (R-CNN;

Girshick2013): (a) extract region proposals (b) where CNN is

applied for extracting features, (c) which are then classified using

SVM, (d) then bounding box regression is applied

◼ The original R-CNN introduces selective search (hierarchical

grouping) for region extraction: (a) initial candidate regions, (b)

use greedy algorithm to merge similar regions into larger one

Object Detection (3)

◼ Fast R-CNN (Girshick2015): (a) Firstly, extracting features from

an entire image and then using RoI projection to extract features

at each region. (b) classification/bounding box regression are

trained simultaneously using the multi-task loss

◼ Problems in R-CNN:

• It trains classification/bounding box regression independently,

therefore it takes large time to train the network and cannot

be real time in test (47sec for one image)

Object Detection (4)

◼ Faster R-CNN (Ren2015): introduced the region proposal

network to learn the extraction of region proposal which allows

an end-to-end learning (5fps on GPU)

◼ Problems in Fast R-CNN:

• It still requires the time-consuming region proposal

extraction, therefore the framework is not actually end-to-end

Object detection in the wild by Faster R-CNN + ResNet-101

https://www.youtube.com/watch?v=WZmSMkK9VuA

Object Detection (5)

◼ YOLO (You Only Look Once; Redmon2016): unlike previous

algorithms that are “proposal extraction + classification”, YOLO

uses a single CNN to predicts the bounding boxes and the class

probabilities for the box (use information outside the local region)

◼ YOLO takes an image and split it into grid, within each of the

grid bounding boxes are taken. The bounding boxes whose class

probability is above a threshold is selected to locate the object

◼ 2x faster but less accurate than Faster R-CNN. It is also weak for

small objects

YOLO v2: 2017/12 w/ BN 224px -> 448px
YOLO v3: 2018/04 w/ multi-class, New arc.
YOLO v4: 2020/04 implemented by different people
YOLO v5: 2030/06 implemented by different people

https://www.youtube.com/watch?v=V4P_ptn2FF4

Object Detection (6)

◼ Mask R-CNN (He2017):

• Solved the “subpixel shift”

problem in Faster R-CNN by

bilinear interpolation

• Can also predict object masks

Semantic Segmentation (1)

◼ Semantic segmentation task is to predict a pixel-wise instance

label corresponding to an input image or vide frames

◼ VOC2012 and MSCOCO are important benchmark datasets

◼ Unlike other CNN tasks, the output is structured (e.g,. image)

SegNet: https://www.youtube.com/watch?v=CxanE_W46ts

FCN (Long2014)

Semantic Segmentation (2)

◼ The standard strategy is to use the encoder-decoder architecture

DeconvNet (Noh2015)

No skip

connection

Semantic Segmentation (3)

◼ Unpooling: the reverse operation of max pooling. It recodes the

locations of maximum activations selected during pooling operation

in switch variables, which are employed to place each activation

back to its original pooled location

◼ Deconvolution (transposed convolution): densify the sparse

activations obtained by unpooling through convolution-like

operations with multiple learned filters

Deconvolution operation

Seg-Net (Badrinarayanan2015)

Semantic Segmentation (5)

U-Net (Ronneberger2015)

◼ Skip connection is a very powerful tool to keep the original

resolution and propagate loss effectively in back propagation

w/ class balancing

w/ weighted loss on boundary

Semantic Segmentation (6)

◼ Other than the encoder-decoder like net, we can use the dilated

convolution (Yu2015) without using pooling to keep the original

resolution

https://github.com/vdumoulin/conv_arithmetic

Other Topics

◼ CNN on 3-D Data (point cloud, voxels, meshes)

⚫ Differentiable Renderer, Single image 3-D reconstruction

◼ Graph Neural Networks

⚫ Holistic vision

◼ Self-supervised / Unsupervised Learning, Domain Adaptation

⚫ Deep learning with few training samples

◼ Multi-modal Neural Networks (e.g., Image + Text)

⚫ Deep image captioning

◼ Generative Networks (e.g., GAN, Transformer)

⚫ Deep fake, StyleGAN

◼ Recurrent Neural Networks (next weak)

◼ Deep Reinforcement Learning

⚫ e.g., AlphaGO

