
Fundamentals of
Media Processing

Lecturer:

池畑 諭（Prof. IKEHATA Satoshi）
児玉 和也（Prof. KODAMA

Kazuya）

Support:

佐藤 真一（Prof. SATO Shinichi）
孟 洋（Prof. MO Hiroshi）

Course Overview (15 classes in total)

1-10 Machine Learning by Prof. Satoshi Ikehata

11-15 Signal Processing by Prof. Kazuya Kodama

Grading will be based on the final report.

10/16 (Today) Introduction

10/23 Basic mathematics (1) (Linear algebra, probability, numerical computation)

10/30 Basic mathematics (2) (Linear algebra, probability, numerical computation)

11/6 Machine Learning Basics (1)

11/20 Deep Feedforward Networks

11/27 Regularization and Deep Learning

12/4 Optimization for Training Deep Models

12/11 Convolutional Neural Networks and Its Application (1)

12/18 Convolutional Neural Networks and Its Application (2)

11/13 Machine Learning Basics (2)

Basic of Machine Learning (Maybe for beginners)

Basic of Deep Learning

CNN and its Application

Chap. 2,3,4

Chap. 2,3,4

Chap. 1

Chap. 5

Chap. 5

Chap. 6

Chap. 7

Chap. 8

Chap. 9 and more

Chap. 9 and more

Deep Feedforward Networks

Depth of the network

Deep Feedforward Networks

◼ Deep feedforward network (or multilayer perceptron; MLP)

approximates a function 𝑦 = 𝑓∗ 𝑥 𝑏𝑦 𝑓(𝑥; 𝜃) and learns 𝜃

◼ Information flows through the function being evaluated from x,

through the intermediate computation used to define f and finally

to the output y. There are no feedbacks

◼ A simple linear model cannot learn. To get the nonlinearity of the

function, we introduce the nonlinear transformation of 𝑥 as 𝑦 =
𝑓 𝑥; 𝜃,𝝎 = 𝜙 𝑥; 𝜃 𝑇𝝎: The deep neural networks try to learn 𝜙

Learning XOR Network (1)

◼ Training from pairs of 𝑥1, 𝑥2 ([0,0], [0,1], [1,0], [1,1]), learn the

function that returns 𝑥1 ⊕𝑥2 by minimizing

Learning XOR Network (2)

◼ Simple linear model (𝑦 = 𝝎𝑇𝒙 + 𝑏) cannot solve this problem,

since the problem is not linearly separable

Learning XOR Network (3)

◼ Consider a simple feedforward network:

• 𝒉 = 𝑓1 𝒙;𝑊, 𝒄 ;𝑊𝑇𝒙 + 𝒄
• 𝑦 = 𝑓2 ℎ;𝝎, 𝑏 ;𝝎𝑇𝒉 + 𝑏

• 𝑦 = 𝑓2 𝑓1 𝑥 = 𝑓 𝑥;𝑊,𝝎, 𝑏, 𝒄 = 𝒙𝑇𝑊𝝎 = 𝒙𝑇𝝎′

Learning XOR Network (4)

◼ Since the linear function cannot solve the problem, we need some

“nonlinearity” in the function 𝑦 = 𝑓2 𝑓1 𝑥

• 𝒉 = 𝑊𝑇𝒙 + 𝒄 → 𝒉 = 𝑔 𝑊𝑇𝒙 + 𝒄 : 𝑔 is a nonlinear function

◼ In modern neural networks, the default recommendation of 𝑔 is to

use the rectified linear unit (ReLU; Jarrettet al., 2009), defined by

the activation function g(z) = max{0, z}.

Learning XOR Network (5)

◼ We can now specify our complete feedforward model as

• 𝑓 𝑥;𝑊,𝝎, 𝑏, 𝒄 = 𝝎𝑇max(0,𝑊𝑇𝒙 + 𝒄) + 𝑏

𝑏 = 0

𝑋𝑊 + 𝒄

→→
𝑅𝑒𝐿𝑢

→
𝝎, 𝑏

Training result

Gradient-based Learning

◼ Cost function in neural network is generally non-convex,

therefore iterative (stochastic, gradient-based) optimization is

required

◼ All weights are initialized by small random values, biases are

initialized by small positive values or zeros

◼ Back-propagation (BackProp) algorithm, which is common in

deep neural networks, is used to compute the gradient

Cost Function

◼ Most modern deep neural networks are trained using the

maximum likelihood estimation. Negative log-likelihood helps to

avoid the gradient of the cost function being too small when its

argument is too negative (i.e.,
de 𝑦−𝑦 2

𝑑𝑥
~𝑒𝑥 ,

d log(e𝑥)

𝑑𝑥
~𝑥)

Cross entropy loss

◼ Cross-entropy cost function is more popular than mean-squared

error or mean absolute error since some output units that saturate

produce very small gradients when combined with these cost

functions

When 𝑝model = 𝒩(𝒚; 𝑓 𝒙; 𝜽 ; 𝐼)

Output Units (1)

⚫ Linear unit: Given features 𝒉, it outputs as

• ො𝑦 = 𝑊𝑇𝒉 + 𝑏
• Often used to produce a mean of a conditional Gaussian

distribution

⚫ Sigmoid unit: Given features 𝒉, it outputs as

• ො𝑦 = 𝜎 𝑊𝑇𝒉 + 𝑏 : 𝜎 is a logistic sigmoid function

• Binary classification problem needs to predict the probability

P(y=1|x) within the range of [0,1]

• We can not define gradient outside the intervals of [0,1] when

we simply use

• Derivative function of sigmoid is computed anywhere

Output Units (2)

⚫ Softmax unit: Output unit for multilabel classification problem

• Multilabel classification problem needs to predict the

probability ෝ𝑦𝑖 = 𝑃(𝑦 = 𝑖|𝒙) within the range of [0,1] and

summation of ෝ𝑦𝑖 must be one

• Works well with the log-likelihood-based loss, but many other

objective functions other than log-likelihood does not work

because the gradient will vanish when the argument to exp

becomes very negative

• Named “softmax” because it is continuous and differentiable

version of max

i = 1,…,# of class

Hidden Units (1)

◼ Rectified linear units 𝑔 𝑧 = max{0, 𝑧} are a default choice of

hidden unit but one drawbacks of ReLU is they cannot learn via

gradient-based methods on examples where their activation is zero

• Nondifferentiable at z=0 isn’t problematic in most cases

◼ Three variations are based on using a nonzero slope 𝛼𝑖 when 𝑧𝑖 <
0: ℎ𝑖 = 𝑔 𝑧, 𝛼 𝑖 = max 0, 𝑧𝑖 + 𝛼𝑖min(0, 𝑧𝑖)

• Absolute value rectification : 𝛼𝑖 = −1 (𝑔 𝑧 = 𝑧)
• Was used for object recognition from images (Jarrett 2009)

• A leaky ReLU : 𝛼𝑖 is a fixed small value like 0.01 (Maas2013)

• A parametric ReLU (PReLU)leaky ReLU : 𝛼𝑖 is a learnable

parameter (He2015)

Hidden Units (2)

◼ Maxout units:

• Instead of applying an element-wise function, maxout units

divide z into groups of k values. Each maxout unit then outputs

the maximum element of one of these groups which provides a

way of learning a piecewise linear function that responds to

multiple directions in the input x space

https://cs.adelaide.edu.au/~carneiro/publications/226.pdf

Hidden Units (3)

◼ Logistic sigmoid, hyperbolic tangent: 𝑔 𝑧 = 𝜎 𝑧 , tanh(𝑧)
• Activation functions prior to the ReLU

• They saturate to a high value when z is very positive, saturate to

a low value when z is very negative, therefore a gradient-based

algorithm was very difficult

• Therefore, rather used as an output unit

◼ Other hidden units (not commonly used)

• Radial basis function unit

• Softplus (𝑔 𝑎 = log(1 + 𝑒𝑎))
• Hard tanh (𝑔 𝑎 = max(−1,min(1, 𝑎))
• Etc…

Architecture Design (1)

◼ Architecture refers to the overall structure of the network

◼ Most neural networks are organized into groups of units called

layers (i.e., unit ≠ layer)

Alex-Net (Krizhevsky2012)

VGG-Net (Simonyan2013)

Google-Net (Segedy2015) Res-Net (He2015)

8 layers

16 layers

22 layers 125 layers

Architecture Design (2)

◼ Universal Approximation theorem (Hornik1989)

• Regardless of what function we are trying to learn, a

feedforward network with a single layer is sufficient to

represent any function. However, the layer may be infeasibly

large and may fail to learn and generalize correctly

• In many circumstances, using deeper models can reduce the

number of units required to represent the desired function

and can reduce the amount of generalization error

Architecture Design (3)

◼ Skip connections

• Going from layer 𝑖 to layer 𝑖 + 2 or higher, which makes it

easier for the gradient to flow from output layers to layers

nearer the input (e.g., ResNet)

◼ Dense connections

• Going from layer 𝑖, layer 𝑖 + 1 to layer 𝑖 + 2, which

reduces the number of parameters to represent the function

(e.g., DenseNet, Huan2017)

Back Propagation (1)

◼ Forward propagation

• Given input 𝑥, the information is propagated up to the hidden

units at each layer and finally an output ො𝑦 is produced

◼ Back propagation (backprop; Rumelhart1986)

• The back propagation algorithm allows information from the

cost to then flow backward through the network (or graph) in

order to compute the gradient of a function (Not specific for

the deep learning algorithm)

In Out In Out

Back Propagation (2)

◼ Computational Graph

• Each node in the graph indicates a variable

• An operation is a simple function of one or more variables

• If a variable 𝑦 is computed by applying an operation to a

variable 𝑥, then we draw a directed edge from 𝑥 to 𝑦

◼ Notation about Gradient

• ∇𝐗𝑧 denotes the gradient of value

𝑧 with respect to a tensor 𝐗
• ∇𝐗𝑧 𝑖 gives 𝜕𝑧/𝜕𝑥𝑖
• If 𝐘 = 𝑔(𝐗) and 𝑧 = 𝑓(𝐘), then

∇𝐗𝑧 =

𝑗

∇𝐗𝑌𝑗
𝜕𝑧

𝜕𝑌𝑖
(Chain rule)

Back Propagation (3)

◼ First, consider a computational graph describing how to compute a

single scalar 𝑢(𝑛) (i.e., the loss on a training example)

◼ We want to obtain gradient with respect to the 𝑛𝑖 input nodes

(
𝜕𝑢 𝑛

𝜕𝑢 𝑖 , 𝑖 ∈ {1,2,… , 𝑛𝑖})

◼ Each node w.r.t hidden units 𝑖 ∈ {𝑛𝑖+1, … , 𝑛𝑛−1} is associated

with an operator 𝑓 𝑖 and is computed by evaluating the function

𝑢 𝑖 = 𝑓 𝔸 𝑖 , where 𝔸 𝑖 is the set of all nodes that are parents

of 𝑢 𝑖

Algorithm of forward

propagation

Back Propagation (4)

◼ We denote the computational subgraph ℬ for backprop with one

node per node of graph 𝒢 for forward prop. Each node of ℬ

computes the derivative 𝜕𝑢 𝑛 /𝜕𝑢 𝑖 via:

𝜕𝑢 𝑛

𝜕𝑢 𝑗
=

𝑖:𝑗∈𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑢(𝑖))

𝜕𝑢 𝑛

𝜕𝑢 𝑖

𝜕𝑢 𝑖

𝜕𝑢 𝑗

𝑢 𝑛

𝑢 𝑗

𝑢 𝑖

ChildParent

Back propagation

𝑢 𝑖

𝑢 𝑖

Back Propagation (5)

◼ Example: a fully connected MLP (multi-layer perceptron)

Algorithm: Forward Propagation

Back Propagation (6)

Algorithm: Back Propagation

e.g.,
𝜕𝐽

𝜕𝒂𝒌
=

𝜕𝐽

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝒂𝒌
=

𝜕𝐿

𝜕 ො𝑦
∙ 𝑓′(𝒂𝑘)

𝐽

ො𝑦

𝒙

𝑎

ො𝑦 = 𝑓(𝒂)

𝒂 = 𝒃 +𝑊𝑇𝒙

𝐽 = 𝐿 ො𝑦, 𝑦 + 𝜆

e.g.,
𝜕𝐽

𝜕𝑏𝑘
=

𝜕𝐽

𝜕𝒂𝒌
𝜕𝒂𝒌

𝜕𝒃𝒌
=

𝜕𝐽

𝜕𝒂𝒌
+ (𝒓𝒆𝒈.)

e.g.,
𝜕𝐽

𝜕𝑊𝑘 =
𝜕𝐽

𝜕𝒂𝒌
𝜕𝒂𝒌

𝜕𝑊
=

𝜕𝐽

𝜕𝒂𝒌
𝒉𝒌

𝑇
+ (𝒓𝒆𝒈.)

e.g.,
𝜕𝐽

𝜕𝒉𝑘−1
=

𝜕𝐽

𝜕𝒂𝒌
𝜕𝒂𝒌

𝜕𝒉𝒌−𝟏
= 𝑊𝑇 𝜕𝐽

𝜕𝒂𝒌−𝟏

𝐻 = max{0, 𝑋𝑊(1)}

𝑈(1) = 𝑋𝑊(1)

𝑈(2) = 𝐻𝑊(2)

𝐽 = 𝐽𝑀𝐿𝐸 + 𝜆 𝑊 1
𝐹

2
+ 𝑊 2

𝐹

2

𝑊 2
𝐹

2

𝑊 1
𝐹

2

Back Propagation (7)

L2 regularizer

◼ Symbolic-to-number differentiation (Used in Torch and Caffe)

◼ Take a computational graph and as set of numerical values for

the inputs to the graph, then return a set of numerical values

describing the gradient at those input values

◼ Symbolic-to-symbol differentiation

(Used in Theano and TensorFlow)

◼ Take a computational graph and add

additional nodes to the graph that

provides a symbolic description of the

desired derivatives.

◼ It is possible to run backpropagation

again, differentiating the derivatives

to obtain higher derivatives (e.g., for

computing Hessian)

Implementation of General Back-Propagation (1)

Implementation of General Back-Propagation (2)

◼ Software implementations of backprop provide both the

operations and their “bprop” method

• We assume that each variable 𝐕 associated with assumptions:

• get_operation(𝐕): Returns the operation that computes 𝐕,

represented by the edges coming into V in the graph

• get_consumers(𝐕, 𝒢): Returns the list of variables that are

children of V in the computational graph 𝒢
• get_inputs(𝐕, 𝒢): Returns the list of variables that are parents

of V in the computational graph 𝒢
• Each operation is associated with a “bprop” operation, which

computes a Jacobian-vector product as

• For example, given a multiplication operation to create a

variable 𝐶 = 𝐴𝐵, bprop requests the gradient w.r.t. 𝐴 or 𝐵
without knowing any differentiation rules.

∇𝐗𝑧 =

𝑗

∇𝐗𝑌𝑗
𝜕𝑧

𝜕𝑌𝑖

Implementation of General Back-Propagation (3)

◼ When “bprop” is called, op.bprop(inputs, X, G) returns:

𝑖

∇𝑋op. f inputs 𝑖 𝐺𝑖

• Here, inputs is a list of inputs that are supplied to the operation

• op.f is the mathematical function that the operation implements

• X is the input whose gradient we wish to compute

• G is the gradient on the output of the operation

◼ Software engineers who build a new implementation of back-

propagation or advanced users who need to add their own

operation to an existing library mush usually derive the op.bprop

method for any new operations manually

Implementation of General Back-Propagation (4)

◼ The deep learning community uses computational graphs that are

usually represented by explicit data structures created by

specialized libraries

◼ It requires the library developer to define the bprop methods for

every operation and limiting the users of the library to only those

operations that have been defined

◼ However it has benefit of allowing customized back-propagation

rules to be developed for each operation, enabling the developer to

improve speed or stability in nonobvious

◼ Back-propagation is not the only way of computing the gradient,

but it is a practical method that continues to serve the deep

learning community well

High-Order Derivatives

◼ We are often interested in computing the Hessian matrix.

• If we have a function 𝑓:ℝ𝑛 → ℝ, the Hessian matrix

is of size 𝑛 × 𝑛
• Since n will be the number of parameters, the entire

Hessian matrix is infeasible to even present

◼ Krylov method

• A set of iterative techniques for performing various

operations, such as approximately inverting a matrix

or finding approximations to its eigenvectors or

eigenvalues without using any operation other than

matrix-vector products. Using this, we can compute

Hessian in the form of:

𝐻𝒗 = ∇𝒙 ∇𝒙𝑓 𝒙
𝑇
𝒗

Conclusion with Historical Remarks

◼ The core ideas behind feedforward networks (BackProp,

gradient descent) have not changed since the 1980s.

◼ Most of the improvement in neural network performance

from 1986 to Now can be attributed two factors: larger

datasets and larger networks

◼ One of the algorithmic changes was replacement of

means squared error with the cross-entropy family of loss

functions and the idea of maximum likelihood, which

less suffers from saturation and slow learning than using

the mean squared error loss

◼ Another algorithmic change was the replacement of

hidden sigmoid unit with ReLu and its variants. Why

ReLu is better than non-linear ones is still of interest

