Fundamentals of
Media Processing

Lecturer:
W E (Prof. IKEHATA Satoshi)

IBE F1t (Prof. KODAMA
Kazuya)

Support:
#E &E— (Prof. SATO Shinichi)
% ¥ (Prof. MO Hiroshi)

Course Overview (15 classes In total)

1-10 Machine Learning by Prof. Satoshi Ikehata

11-15 Signal Processing by Prof. Kazuya Kodama

Grading will be based on the final report.

10/16 (Today) Introduction Chap.1

Basic of Machine Learning (Maybe for beginners)
10/23 Basic mathematics (1) (Linear algebra, probability, numerical computation) Chap. 2,3,4
10/30 Basic mathematics (2) (Linear algebra, probability, numerical computation) chap. 2,34
11/6 Machine Learning Basics (1) cChap.5
11/13 Machine Learning Basics (2) chap.5

Basic of Deep Learning

11/20 Deep Feedforward Networks chap. 6
11/27 Regularization and Deep Learning chap.7

12/4 Optimization for Training Deep Models Chap.8

CNN and its Application

12/11 Convolutional Neural Networks and Its Application (1) Chap. 9 and more

12/18 Convolutional Neural Networks and Its Application (2) chap. 9 and more

Deep Feedforward Networks

Deep Feedforward Networks

B Deep feedforward network (or multilayer perceptron; MLP)
approximates a function y = f*(x) by f(x; 8) and learns 6

B Information flows through the function being evaluated from X,
through the intermediate computation used to define f and finally

to the output y. There are no feedbacks

B A simple linear model cannot learn. To get the nonlinearity of the
function, we introduce the nonlinear transformation of x asy =
f(x;0,w) = ¢p(x;0)" w: The deep neural networks try to learn ¢

Hidden
Input layer
layer

Inputs
Outputs

) Depth of the network

Learning XOR Network (1)

B Training from pairs of x4, x, ([0,0], [0,1], [1,0], [1,1]), learn the
function that returns x; @ x, by minimizing

1

JO) =3 (f'(2) - f(a:0))°

Ee 1l ..:f-
i

A B 2
Fx,x)=x®x,
S
=(xx0) | F(x) g Ag
00 0 S S
01 1 X X e .
10 1
11 0 0 1 1 0

Learning XOR Network (2)

B Simple linear model (y = w!x + b) cannot solve this problem,
since the problem is not linearly separable

Original a space Learned h space
| | | I I

1 1 0 A 1k 0 .

h 2

L2

1

Learning XOR Network (3)

B Consider a simple feedforward network:
e h=fY(x;W,c);Wix+c¢
* y=f*(hwb);w"h+b
c v=f%fl1(x) =f(;W,w,b,c) =x"Ww = xTw'

Learning XOR Network (4)

B Since the linear function cannot solve the problem, we need some
“nonlinearity” in the function y = f? (f1 (x))
c h=W'x+c-> h=gW"'x+ c): g isanonlinear function

B In modern neural networks, the default recommendation of g Is to
use the rectified linear unit (ReLLU; Jarrettet al., 2009), defined by
the activation function g(z) = max{0, z}.

Learning XOR Network (5)

B \\We can now specify our complete feedforward model as

« f(x;W,w,b,¢) = w" max(0,WTx +¢) + b

T =

oe]]'_

Training result

Il
e = R
=
=
l—l.
-
oy
[
o

T [lj xw+e | L] Reru [V V] b
YW — . 1 0 Lo 5
11 1 0 1 0
[2 2 [2 1 | | 2 1 i

= =

Gradient-based Learning

B Cost function in neural network is generally non-convex,
therefore iterative (stochastic, gradient-based) optimization is
required

B All weights are initialized by small random values, biases are
Initialized by small positive values or zeros

B Back-propagation (BackProp) algorithm, which is common in
deep neural networks, is used to compute the gradient

Cost Function

B Most modern deep neural networks are trained using the
maximum likelihood estimation. Negative log-likelihood helps to
avoid the gradient of the cost function being too small when its

delly-yll2 x dlog(e®)

argument is too negative (i.e., e, — X)
J(0) = —Ex y~p o 108 Pmodel (Y |). Cross entropy loss
1 ‘
J(H) — §EX,}’N}3{1M3 |y o f(ﬂl‘, 9) ‘ |A2 + const When Pmodel = N(y;f(xi 0); I)

B Cross-entropy cost function is more popular than mean-squared
error or mean absolute error since some output units that saturate
produce very small gradients when combined with these cost
functions

Output Units (1)

® Linear unit: Given features h, it outputs as @
« y=WTh+b
« Often used to produce a mean of a conditional Gaussian
distribution

® Sigmoid unit: Given features h, it outputs as
« y=0(WTh+ b): 0 is alogistic sigmoid function
 Binary classification problem needs to predict the probability
P(y=1|x) within the range of [0,1]
« \We can not define gradient outside the intervals of [0,1] when

we simply use
P Ply=1 |:E):111?11{0.111111{1.11:'& | 4‘;}}

 Derivative function of sigmoid is computed anywhere

Output Units (2)

® Softmax unit: Output unit for multilabel classification problem

« Multilabel classification problem needs to predict the
probability y; = P(y = i|x) within the range of [0,1] and
summation of y; must be one

« \Works well with the log-likelihood-based loss, but many other
objective functions other than log-likelihood does not work
because the gradient will vanish when the argument to exp
becomes very negative

* Named “softmax’ because it 1s continuous and differentiable
version of max

softmax(z); = eXp(i) . oz = WTh + b
i=1,...#ofclass Z]exp(zj) ’

Hidden Units (1)

B Rectified linear units g(z) = max{0, z} are a default choice of
hidden unit but one drawbacks of ReL.U is they cannot learn via
gradient-based methods on examples where their activation is zero

* Nondifferentiable at z=0 isn’t problematic in most cases

B Three variations are based on using a nonzero slope a; when z; <
0:h; = g(z,a); = max(0, z;) + a; min(0, z;)

 Absolute value rectification: a; = —1 (g(z) = |z|)
« \Was used for object recognition from images (Jarrett 2009)

* Aleaky RelLU : «; Is a fixed small value like 0.01 (Maas2013)

« Aparametric ReLU (PReLU)leaky ReLU : «; is a learnable
parameter (He2015)

Hidden Units (2)

B Maxout units:
 Instead of applying an element-wise function, maxout units

divide z into groups of k values. Each maxout unit then outputs
the maximum element of one of these groups which provides a

way of learning a piecewise linear function that responds to
multiple directions in the input x space

l = l -1 [
o = Sl

=1
o _ ()
z, = maz(u;)
A A
Region1 Y | Region 2 Region1 Y
X
“ RelU LReLU and PReLU Maxout (k=4)

https://cs.adelaide.edu.au/~carneiro/publications/226.pdf

Hidden Units (3)

B |ogistic sigmoid, hyperbolic tangent: g(z) = o(z), tanh(z)
 Activation functions prior to the ReLU
« They saturate to a high value when z is very positive, saturate to
a low value when z is very negative, therefore a gradient-based
algorithm was very difficult
« Therefore, rather used as an output unit

B Other hidden units (not commonly used)
 Radial basis function unit
« Softplus (g(a) = log(1 + e%))
« Hard tanh (g(a) = max(—1, min(1, a))
* Efc...

Architecture Design (1)

B Architecture refers to the overall structure of the network
B Most neural networks are organized into groups of units called
layers (i.e., unit # layer)

dense derse

Alex-Net (Krizhevsky2012)
8 layers VGG-Net (Simonyan2013)

18 16 layers

i 41 1.8 mgﬂﬁ-gﬂggﬂﬂl%gﬂ%”" ATV)
sefaatadipd il fiaet i 1 1
TRTERT g:g.pu,A (EEERIE a| [2) (=) (= (2 (& (3] (2] (2] [=] (2 (o[(a| (8] (2] (=) (= |o] 3| (2] [a] [8] [a & ¥ *

Convolution
Google-Net (Segedy2015) recirs Res-Net (He2015)

22 layers o 125 layers

Architecture Design (2)

B Universal Approximation theorem (Hornik1989)

* Regardless of what function we are trying to learn, a
feedforward network with a single layer Is sufficient to
represent any function. However, the layer may be infeasibly
large and may fail to learn and generalize correctly

* In many circumstances, using deeper models can reduce the
number of units required to represent the desired function
and can reduce the amount of generalization error

97

— +—e 3 convolutional

2 96 | H
3 +—+ 3, fully connected
2 9%r V¥ 11, convolutional H
g o4l .
g o3t —_—]
& 92 +

91

1 | L 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters %103

Architecture Design (3)

W SKip connections
» Going from layer i to layer i + 2 or higher, which makes it
easier for the gradient to flow from output layers to layers
nearer the input (e.g., ResNet)

B Dense connections
« Going from layer i, layer i + 1 to layer i + 2, which
reduces the number of parameters to represent the function
(e.g., DenseNet, Huan2017)

Input

Prediction
Dense Block 1 Q Dense Block 2 [+ Dense Block 3 :
- - —> 3 > . > g Qo - - —»! ‘horse”

Figure 2. A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change

PO

feature map sizes via convolution and pooling.

Back Propagation (1)

B Forward propagation

e Given input x, the information is propagated up to the hidden
units at each layer and finally an output ¥ is produced

B Back propagation (backprop; Rumelhart1986)

« The back propagation algorithm allows information from the
cost to then flow backward through the network (or graph) in
order to compute the gradient of a function (Not specific for
the deep learning algorithm)

Back Propagation (2)

B Computational Graph
« Each node in the graph indicates a variable
« An operation is a simple function of one or more variables

« Ifavariable y is computed by applying an operation to a
variable x, then we draw a directed edge from x to y

B Notation about Gradient
« Vxz denotes the gradient of value ,
z With respect to a tensor X sun 4
* (Vxz); gives 0z/0x; °
« IfY=g(X) andz = f(Y), then

dot o4y
0z
Vxz = Z(VX)G)(?_YL (Chain rule) 0 O
J

>

Back Propagation (3)

B First, consider a computational graph describing how to compute a

single scalar u(™ (i.e., the loss on a training example)
B \\We want to obtain gradient with respect to the n; input nodes

ou™ |
(au(i) i €{1,2,..,n;})

B Each node w.r.t hidden unitsi € {n;,4, ...,n,,_1} IS associated
with an operator £ and is computed by evaluating the function

uld = F(AWD), where AW is the set of all nodes that are parents
of ul®

for:=1,...,n;do
u(i) — I

end for

fori=mn; +1,....ndo Algorithm of forward
AD ()] j € Pa(u)} propagation
ult) ¢ fl) (A(i))

end for

return u(™

Back Propagation (4)

B \We denote the computational subgraph B for backprop with one
node per node of graph G for forward prop. Each node of B
computes the derivative du™ /gu(® via:

ou™ ou™ gu®
u) Z du® ou)

i:jeParents(u(®)

Back propagation

Run forward propagation (algorithm 6.1 for this example) to obtain the activa-
tions of the network.
Initialize grad_table, a data structure that will store the derivatives that have

been computed. The entry graditable[-u.(’)] will store the computed value of
Auln)
dult) *

grad table[u")] « 1
for j =n—1downto 1l do

et T o Oulm) Aul™) Gul e 1 o
The next line computes SaTT = Z,‘:jd,u(”(,,) 5T S using stored values:

grad table[ul/)] « Zj:‘jel,”(”m)graditable[u(")}jj:jt(_;;
end for

return {grad table[u)]|i=1...., ni}

Back Propagation (5)

B Example: a fully connected MLP (multi-layer perceptron)

Algorithm: Forward Propagation

Require: Network depth, [
Require: W) i ¢ {1,...,1}, the weight matrices of the model
Require: b9, i e {1,....,1}, the bias parameters of the model
Require: x, the input to process
Require: y. the target output

for k=1,...,l do

a'®) = pk) L wk)p(k=1)

end for

U = R

J=L(y,y) + \Q(0)

Back Propagation (6)

a®) = pF) 4+ w (k) p(k-1)
h (k) _f(a(k'))

Algorithm: Back Propagation

After the forward computation, compute the gradient on the output layer:
g+ Vg =V L(Y,y)
fork=1,l—1.,....1do

Convert the gradient on the layer’s output into a gradient on the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):

0] _0]0y _ 0L i k
g+ VawJ =g0 f(a®) €8 5ak = o504k — 05] (@)

Compute gradients on weights and biases (including the regularization term,

where needed): a] _ 9] aak _ aj

Viwd =g+ AV) 2(0) 890k = dak obk = dak +(reg.)
Vmd =g h DT £ AV 0Q(0) eg, 0 =20 =L pk 1 (reg.)
Propagate the gradients w.r.t. the next lower—levvevl hidden fgyer’saactivations:
g+« Vyu-nJ=WHTg 0] _ 0] oak _ r o)

e.g. =
end for g ! ahk_l aak ahk_l aak‘l

Back Propagation (7)

)= Je + (WO + W])
L2 regularizer

Implementation of General Back-Propagation (1)

B Symbolic-to-number differentiation (Used in Torch and Caffe)
B Take a computational graph and as set of numerical values for
the inputs to the graph, then return a set of numerical values
describing the gradient at those input values

B Symbolic-to-symbol differentiation
(Used in Theano and TensorFlow)

B Take a computational graph and add ()
additional nodes to the graph that
provides a symbolic description of the
desired derivatives.

W It is possible to run backpropagation
again, differentiating the derivatives
to obtain higher derivatives (e.g., for
computing Hessian)

Implementation of General Back-Propagation (2)

B Software implementations of backprop provide both the
operations and their “bprop” method
« We assume that each variable V associated with assumptions:
« get operation(V): Returns the operation that computes V,
represented by the edges coming into V in the graph
« get_consumers(V, G): Returns the list of variables that are
children of V in the computational graph G
« get_Inputs(V, G): Returns the list of variables that are parents
of V in the computational graph G
« Each operation is associated with a “bprop” operation, which
computes a Jacobian-vector product as Pz = z (7,7) g_;

J
« For example, given a multiplication operation to create a
variable C = AB, bprop requests the gradient w.r.t. A or B
without knowing any differentiation rules.

Implementation of General Back-Propagation (3)

B When “bprop” is called, op.bprop(inputs, X, G) returns:

Z(onp. f(inputs);)G;
i

Here, inputs is a list of inputs that are supplied to the operation
op.f is the mathematical function that the operation implements
X 1s the input whose gradient we wish to compute

G is the gradient on the output of the operation

B Software engineers who build a new implementation of back-
propagation or advanced users who need to add their own
operation to an existing library mush usually derive the op.bprop
method for any new operations manually

Implementation of General Back-Propagation (4)

B The deep learning community uses computational graphs that are
usually represented by explicit data structures created by
specialized libraries

B It requires the library developer to define the bprop methods for
every operation and limiting the users of the library to only those
operations that have been defined

B However it has benefit of allowing customized back-propagation
rules to be developed for each operation, enabling the developer to
Improve speed or stability in nonobvious

B Back-propagation is not the only way of computing the gradient,
but it is a practical method that continues to serve the deep
learning community well

High-Order Derivatives

B \\e are often interested in computing the Hessian matrix.
 |If we have a function f: R" — R, the Hessian matrix
Isof sizen Xn
 Since n will be the number of parameters, the entire
Hessian matrix is infeasible to even present

B Krylov method

« Aset of iterative techniques for performing various
operations, such as approximately inverting a matrix
or finding approximations to its eigenvectors or
eigenvalues without using any operation other than

matrix-vector products. Using this, we can compute
Hessian in the form of:

Hv =V, [(fo(x))Tv]

Conclusion with Historical Remarks

B The core ideas behind feedforward networks (BackProp,
gradient descent) have not changed since the 1980s.

B Most of the improvement in neural network performance
from 1986 to Now can be attributed two factors: larger
datasets and larger networks

B One of the algorithmic changes was replacement of
means squared error with the cross-entropy family of loss
functions and the idea of maximum likelihood, which
less suffers from saturation and slow learning than using
the mean squared error loss

B Another algorithmic change was the replacement of
hidden sigmoid unit with ReLu and its variants. Why
ReLu is better than non-linear ones is still of interest

