
Fundamentals of
Media Processing

(Machine Learning Part)

Lecturer:
佐藤 真一（Prof. SATO Shinichi）
池畑 諭（Prof. IKEHATA Satoshi）10/27, 11/10, 11/17, 11/24, 12/1, 12/8
山岸 順一（Prof. Junichi Yamagishi）
児玉 和也（Prof. KODAMA Kazuya）
孟 洋（Prof. MO Hiroshi）

An introduction to a broad

range of topics in deep

learning, covering

mathematical and conceptual

background, deep learning

techniques used in industry,

and research perspectives.

Chapter 1-9 (out of 20)

• Due to my background, I will
mainly talk about “image”

• I will introduce some
applications beyond this book

https://www.deeplearningbook.or
g/lecture_slides.html

Free copy of the book and useful
materials are available at

10/27 (Today)

probability, information theory, numerical computation

11/10

11/17, 11/24, 12/1

Regularization and Deep Learning

Optimization for Training Deep Models

12/8

Chap. 2,3,4

Chap. 1

Chap. 5

Chap. 6

Chap. 7

Chap. 8

Chap. 9 and more

Machine Learning Basics

Introduction

Deep Feedforward Networks

Schedule

Convolutional Neural Networks

Optimization for Training Deep Models

Review: How Deep Learning Differs from Pure Optimization

◼ Empirical Risk Minimization: We do not need the true distribution

𝑝data but empirical distribution Ƹ𝑝data defined by the training set.

The training process based on minimizing the averaging training

error is known as empirical risk minimization

◼ Exactly minimizing 0-1 loss is typically intractable in

classification problem. We typically optimizes a surrogate loss

function such as thee negative log-likelihood of the correct class.

Training halts when a convergence criterion (e.g., early stopping)

is satisfied (not at local minima), which avoids over-fitting

◼ The objective function usually decomposes as a sum over training

examples with minibatch in stochastic descent algorithm

How to Define Minibatch Size?

◼ Larger batches provide a more accurate estimate of the gradient,

but the improvement is less than linear returns

◼ Multicore architectures are usually underutilized by extremely

small batches, which motivates using some absolute minimum

batch size, below which there is no reduction in the time to

process a minibatch

◼ If all examples in the batch are to be processed in parallel, then the

amount of memory scales with the batch size. For many hardware

setups this is the limiting factor in batch size

◼ When using GPUs, it is common for power of 2 batch size to offer

better runtime (e.g., 16 to 256)

◼ Small batches can offer a regularizing effect, perhaps due to the

noise they add to the learning process. Generalization error is often

best for a batch size of 1 though the total runtime can be very high.

Other Tips for Minibatch Algorithm

◼ The minibatches must be selected randomly to compute an

unbiased estimate of the expected gradient from a set of samples

◼ Many datasets are arranged that two successive examples are

highly correlated, therefore the shuffle of data is necessary

◼ An interesting motivation for minibatch stochastic gradient

descent is that it follows the gradient of the true generalization

error as long as no examples are repeated. Nevertheless, most

implementations of minibatch stochastic gradient descent shuffle

the dataset once and then pass through it multiple times (epochs)

(i.e., the second path is unbiased) to reduce the training loss

◼ With extremely large training datasets, it is becoming more

common to use each training example only once

Challenges in Neural Network Optimization (1)

◼ Ill-Conditioning:

• Ill-conditioning of Hessian matrix H can manifest by causing

SGD to get stuck in the sense that even very small steps

increase the cost function (i.e., −𝜖𝒈𝑇𝒈 +
1

2
𝜖2𝒈𝑇𝐻𝒈 > 𝟎):

𝑓 𝒙0 − 𝜖𝒈 ≈ 𝑓 𝒙0 − 𝜖𝒈𝑇𝒈 +
1

2
𝜖2𝒈𝑇𝐻𝒈

◼ Local Minima:

• Neural networks and any models with multiple equivalently

parametrized latent variables all have multiple local minima

because of the model identifiability problem (e.g, swapping

model weights may cause the same output (weight space

symmetry)). Today, it is not considered problematic for

sufficiently large neural networks with early stopping

Challenges in Neural Network Optimization (2)

◼ Saddle Points:

• Saddle points are more common than local minima in neural

networks

• The Eigen values of Hessian matrix at a saddle point has both

positive negative value, which makes the optimization unstable.

Fortunately, Goodfellow(2015) showed that gradient descent

trajectory rapidly escaped this region unlike Newton’s method

◼ Cliffs and Exploding Gradients:

• Neural networks with many layers often have extremely steep

regions resembling cliff which may move the parameters quite

rapidly (especially in recurrent neural network). We can avoid

this by applying the gradient clipping in section 10

Challenges in Neural Network Optimization (3)

◼ Long-Term Dependencies:

• When we need to repeatedly multiplying the same weights in

extremely deep graph (e.g., recurrent neural networks), the

vanishing and exploding gradient problem may occur. On the

other hand the feedforward network does not have this issue

since the weights are different (See details in section 10.7)

◼ Theoretical limits of Optimization

• Some theoretical results show that there exist problem classes

that are intractable by neural networks, but it can be difficult to

tell whether a particular problem falls into that class. It is also

difficult to tell whether an optimization algorithm gave the

solution we needed

• Developing more realistic bounds on the performance of

optimization algorithms therefore an important goal for

machine learning research

About Stochastic Gradient Descent

◼ It is common to decay the learning rate linearly until iteration 𝜏:

• 𝜖𝑘 = 1 − 𝛼 𝜖0 + 𝛼𝜖𝜏 with 𝛼 = 𝑘/𝜏
• Usually 𝜏 is set to the number of iterations required to make a

few hundred passes through the training set. 𝜖𝜏 should be set to

roughly 1 percent the value of 𝜖0. 𝜖0 is generally decided by

monitoring the first few iterations and using a learning rate that

is higher than the best-performing learning rate at this time

◼ The convergence rate of the SGD for the convex problem is

𝑂(1/𝑘) or 𝑂(1/ 𝑘). Bousquet(2008) mentioned that it may not

be worthwhile to pursue an optimization algorithm that converges

faster than 𝑂(1/𝑘) for machine learning tasks (faster convergence

corresponds to overfitting)

Momentum (1)

◼ Unfortunately, SGD can be slow. The momentum is designed to

accelerate learning, especially in the face of high curvature, small

but consistent gradient, or noisy gradients

◼ The momentum algorithm accumulates an exponentially decaying

moving average of past gradients and continues to move in their

direction

𝒗𝑡 ← −𝜖𝒈𝑡 + 𝛼𝒗𝑡−1 = 𝛼𝒗𝑡−1 − 𝜖∇𝜃
1

𝑚
෍

𝑖=1

𝑚

𝐿 𝑓 𝑥𝑖; 𝜃 , 𝑦𝑖

𝜽𝑡 ← 𝜽𝑡−1 + 𝒗𝑡 = 𝜽𝑡−1 − 𝜖𝒈𝑡 + 𝛼𝒗𝑡−1

◼ The momentum algorithm introduces the velocity 𝒗, which is the

direction and speed at which the parameters move through

parameter space

Momentum (2)

Momentum (3)

◼ If the momentum algorithm always observes gradient 𝒈, then it

will accelerate in the direction of −𝒈, until reaching a terminal

velocity where the size of each step is 𝜖 𝒈 /(1 − 𝛼)

◼ Common values of 𝛼 used in practice include 0.5, 0.9, 0.99. For

example 0.9 corresponds to multiplying the maximum speed by 10

relative to the gradient descent method. 𝛼 may also be adaptive

starting from the small value and is later raised.

Gradient

Momentum

Giving the force 𝐹 = 𝑚𝒗 to the ball

𝑚𝑔

Momentum (4)

◼ Nesterov Momentum (Sutskever2013)

• A variance of the momentum algorithm that was inspired by

Nesterov’s accelerated gradient method (Nesterov1983). The

gradient is evaluated after the current velocity is applied.

Nesterov Momemtum does not improve the rate of

convergence in the stochastic gradient

𝒗𝑡 ← 𝛼𝒗𝑡−1 − 𝜖∇𝜃
1

𝑚
෍

𝑖=1

𝑚

𝐿 𝑓 𝑥𝑖; 𝜃𝑡−1 + 𝛼𝒗 , 𝑦𝑖

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

Parameter Initialization (Weight)

◼ Some heuristics are available for choosing the initial scale of the

weights:
• Initialize the weights of a fully connected layer with 𝑚 inputs and 𝑛 outputs

by sampling each weight from the uniform distribution of 𝑈(−
1

𝑚
,
1

𝑚
),

• Glorot(2010) suggest using the normalized initialization

W𝑖,𝑗~𝑈 −
6

𝑚+𝑛
,

6

𝑚+𝑛

• Saxe(2013) recommend initializing to random orthogonal matrices, with a

carefully chosen scaling or gain factor 𝑔 that accounts for the nonlinearity

applied at each layer

• Martens(2010) introduced an alternative initialization scheme called sparse

initialization, in which each unit is initialized to have exactly k nonzero

weights to avoid the weights being too small

• It is also good idea to treat the initial scale of the weights as a hyper

parameter if computational resources allows it

Implementation in Keras Library

Parameter Initialization (Bias)

◼ There are a few situations where we may set some biases to

nonzero values:

◼ If a bias is for an output unit, then it is often beneficial to

initialize the bias to obtain the right marginal statistics of the

output (e. g. , softmax 𝐛 = 𝐜 (output distribution))

◼ Sometimes we may want to choose the bias to avoid causing

too much saturation at initialization. For example, we may set

the bias of a ReLU hidden unit to 0.1

◼ If we have a gate unit (decide if a unit is participate or not),

then we firstly want to choose the output of the unit is one by

adding the bias (e.g., LSTM model in chapter 10)

◼ Besides these random methods of initialization, it is possible to

initialize model parameters using machine learning. A common

strategy is to initialize the supervised model using unsupervised

model trained on the same inputs (See Part III)

Algorithms with Adaptive Learning Rate

◼ The learning rate is reliably one of the most difficult to set

hyperparameters because it significantly affects model

performance

◼ Here we introduce some important algorithms

• AdaGrad

• RMSProp

• Adam

high learning rate

good learning rate

low learning rate
lo

ss

t

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

AdaGrad (Duchi2011)

◼ AdaGrad individually adapts the learning rates of all parameters

by scaling them inversely proportional to the square root of the

sum of all the historical squared values of the gradient. Empirically,

the accumulation of squared gradients from the beginning of

training can result in excessive decrease in learning rate (e.g.,

passing points whose gradient is large at early steps)

RMSProp (Hinton2012)

◼ RMSProp modifies AdaGrad to perform better in the nonconvex

setting by using exponentially decaying average to discard history

from the extreme past to avoid the gradient decreases too rapidly

(e.g., 0.9)

𝜖 = 0.01

Adam (Kingma2014)

◼ Adam is a combination of RMSProp and momentum. In Adam,

momentum is incorporated directly as an estimate of the first-order

moment of the gradient. Adam includes bias corrections to the

estimates for both the first-order moments and the second-order

moments to account for their initialization at the origin

←Momentum
←RMSProp (with decay rate)

𝑠1 = 0.9 ∗ 𝑠0 + 0.1 ∗ 𝑔 = 0.1𝑔

𝑟1 = 0.999 ∗ 𝑟0 + 0.001 ∗ 𝑔2

= 0.001𝑔2

𝑠

𝑟 + 𝛿
=

0.1𝑔

0.001𝑔2 + 𝛿

Ƹ𝑠

Ƹ𝑟 + 𝛿
=

0.1/0.9𝑔

0.001𝑔2/0.009 + 𝛿

Approximate Second-Order Methods (1)

◼ Newton’s method

◼ In deep learning, the surface of the objective function typically

nonconvex, where eigenvalues of Hessian are not all positive

(i.e., local minima and saddle points). To avoid this, we can

regularize Hessian by adding a constant value along the

diagonal of the Hessian. However, only networks with a very

small number of parameters can be practically trained via

Newton’s method due to the significant computational burden.

Δ𝜃 = − 𝐻 + 𝛼𝐼 −1𝒈

Approximate Second-Order Methods (2)

◼ Conjugate Gradient

◼ Efficiently avoids the calculation of the inverse Hessian by

iteratively descending conjugate directions (When 𝝆𝑡
𝑇𝐻𝝆𝑡−1 =

0, 𝝆𝑡and 𝝆𝑡−1are conjugate w.r.t 𝐻).

conjugate orthogonal

Approximate Second-Order Methods (3)

◼ BFGS (Broyden-Fletcher-Goldfarb-Shanno algorithm)

◼ Attempts to bring some of the advantages of Newton’s method

without the computational burden by approximating Hessian

◼ The memory costs of the BFGS algorithm can be significantly

decreased (L-BFGS) by avoiding storing the complete inverse

Hessian approximation 𝐵𝑘 by assuming that 𝐵0 is a identity

matrix (sparse)

https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm

◼ Batch Normalization (BN, Loffe2015) is applied after the

activation to reparametrize the model to make units normalized by

a unit Gaussian (𝜇 = 0, 𝜎2 = 1). For a layer with d-channel input

𝑥 = 𝑥 1 , … , 𝑥 𝑑 , we will normalize each dimension

Batch Normalization

◼ Internal Covariate Shift (Shimodaira2000): Training deep neural

networks changes the distribution of each layer’s inputs during

training, even when the parameters of the previous layers slightly

change, which slows down the training by requiring lower learning

rates and careful parameter initialization

◼ The expectation and variance are computed over the mini-batch

(e. g., 𝑥1
𝑘
, … , 𝑥256

𝑘
). To maintain the expressive power, it is

common to use 𝛼 ො𝑥(𝑘) + 𝛽 (𝛼, 𝛽 are learnable parameters)

Group Normalization

◼ Group Normalization (GN, Wu2018) divides channels into groups

and normalizes the features within each group. GN does not

exploit the batch dimension, and its computation is independent of

batch sizes

◼ In BN, a small batch leads to inaccurate estimation of the batch

statistics, and reducing BN’s batch size increases the model error

dramatically

Batch size
Channel

Image
size

Supervised Pretraining

◼ Greedy algorithms

• break a problem into many components, then combine

individually optimized component (the global optima is not

guaranteed)

• Often followed by the fine-tuning

◼ Greedy supervised algorithms

• break a problem into many supervised learning problem

• Instead of pretraining one layer at a time, we can train a deep

convolutional network and then use the first and last few layers

to initialize even deeper networks

◼ FitNets (Romero2015)

• Firstly, train a teacher network and then train the student

network (deeper and thinner) with a supervision by the teacher

network (using a intermediate representations learned by a

teacher)

A

B

A+B

A+B+C A+D+C

Coordinate Descent

◼ It may be possible to solve an optimization problem quickly by

minimizing a multivariate function w.r.t a single variable 𝑥𝑖 while

fixing 𝑥𝑗. This practice is known as (block) coordinate descent

◼ For example, consider a cost function:

𝐽 𝐻,𝑊 =෍

𝑖,𝑗

𝐻𝑖,𝑗 +෍

𝑖,𝑗

𝑋 −𝑊𝑇𝐻 𝑖,𝑗
2

◼ The entire problem is nonconvex, but a subproblem w.r.t a single

variable (W, H) is convex

◼ Coordinate Descent is not a good strategy when variables are

strongly related e.g., 𝑓 = 𝑥1 − 𝑥2
2 + 𝛼 𝑥1

2 − 𝑥2
2

Polyak Averaging

◼ Polyak Averaging (Polyak1992) consists of averaging several

points in the trajectory through parameter space visited by an

optimization algorithm:

መ𝜃𝑡 =
1

t
෍

𝑖

𝜃𝑖

◼ The basic idea is that the optimization algorithm may leap back

and forth across a valley several times without ever visiting a point

near the bottom of the valley. The average of all the locations on

either side should be close to the bottom of the valley though

◼ In nonconvex problems, it is typical to use an exponentially

decaying running average:

መ𝜃𝑡 = 𝛼 መ𝜃𝑡−1 + 1 − 𝛼 𝜃𝑡

𝜃𝑖 are points where gradient descent visited

Continuation Methods

◼ Continuation Methods

• Starting from solving the easiest problem and then refine the

solution to solve incrementally harder problems until we arrive

at a solution to the true underlying problem

• Traditional continuation method is based on smoothing

(blurring) the object function

• Intuitively, some nonconvex functions become approximately

convex by being blurred to avoid the local minima

◼ Curriculum learning

• the idea of planning a learning process to begin by

learning simple concepts and progress to learning

more complex concepts (e.g., animal training,

natural languages)

