Fundamentals of
Media Processing
(Machine Learning Part)

Lecturer:

k¥ E— (Prof SATO Shinichi)

B 5 (Prof. IKEHATA Satoshi) 10/27,11/10,11/17,11/24,12/1,12/8
LiE NE— (Prof. Junichi Yamagishi)

IBE # (Prof. KODAMA Kazuya)

%= ¥ (Prof. MO Hiroshi)

Chapter 1-9 (out of 20)

An introduction to a broad
range of topics in deep
learning, covering
mathematical and conceptual
background, deep learning
techniques used in industry,
and research perspectives.

* Due to my background, | will
mainly talk about “image”

e | will introduce some
applications beyond this book

Deep Learning

An MIT Press book in preparation

fellow, Yoshua Bengio and Aaron Courville l P

Book Exercises External Links

Lectures

We plan to offer lecture slides accompanying all chapters of this book. We currently offer slides for
only some chapters. If you are a course instructor and have your own lecture slides that are
relevant, feel free to contact us if you would like to have your slides linked or mirrored from this
site.

1. Introduction
o Presentation of Chapter 1, based on figures from the book [.key] [Lpdf]
o Video of lecture by Ian and discussion of Chapter 1 at a reading group in San Francisco
organized by Alena Kruchkova
. Linear Algebra [.key][.ndf]
. Probability and Information Theory [.key][.pdf]
. Numerical Computation [.key] [.pdf] [youtube]
. Machine Learning_Basics [.key] [.pdf]
. Deep Feedforward Networks [.key] [.pdf]
o Video (.flv) of a presentation by Ian and a group discussion at a reading group at Google
organized by Chintan Kaur.
. Regularization for Deep Learning [.pdf] [.key]
8. Optimization for Training_Deep Models
o Gradient Descent and Structure of Neural Network Cost Functions [.key] [.pdf]
These slides describe how gradient descent behaves on different kinds of cost function
surfaces. Intuition for the structure of the cost function can be built by examining a
second-order Taylor series approximation of the cost function. This quadratic function can
give rise to issues such as poor conditioning and saddle points. Visualization of neural
network cost functions shows how these and some other geometric features of neural

N LM

~J

Free copy of the book and useful
materials are available at

https://www.deeplearningbook.or
g/lecture_slides.html

Schedule

10/27 (Today) Introduction Chap. 1

probability, information theory, numerical computation Chap. 2,3,4

11/10 Machine Learning Basics Chap.5
11/17,11/24,12/1 Deep Feedforward Networks Chap. 6
Regularization and Deep Learning Chap. 7

Optimization for Training Deep Models chap.8

12/8 Convolutional Neural Networks Chap. 9 and more

Optimization for Training Deep Models

Review: How Deep Learning Differs from Pure Optimization

B Empirical Risk Minimization: We do not need the true distribution
Pdatq DUt empirical distribution pg.t, defined by the training set.
The training process based on minimizing the averaging training
error Is known as empirical risk minimization

B Exactly minimizing 0-1 loss is typically intractable in
classification problem. We typically optimizes a surrogate loss
function such as thee negative log-likelihood of the correct class.
Training halts when a convergence criterion (e.g., early stopping)
Is satisfied (not at local minima), which avoids over-fitting

B The objective function usually decomposes as a sum over training
examples with minibatch in stochastic descent algorithm

How to Define Minibatch Size?

M L arger batches provide a more accurate estimate of the gradient,
but the improvement is less than linear returns

B Multicore architectures are usually underutilized by extremely
small batches, which motivates using some absolute minimum
batch size, below which there i1s no reduction in the time to
process a minibatch

B If all examples in the batch are to be processed in parallel, then the
amount of memory scales with the batch size. For many hardware
setups this is the limiting factor in batch size

B \When using GPUs, it iIs common for power of 2 batch size to offer
better runtime (e.g., 16 to 256)

B Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process. Generalization error is often
best for a batch size of 1 though the total runtime can be very high.

Other Tips for Minibatch Algorithm

B The minibatches must be selected randomly to compute an
unbiased estimate of the expected gradient from a set of samples

B Many datasets are arranged that two successive examples are
highly correlated, therefore the shuffle of data is necessary

B An interesting motivation for minibatch stochastic gradient
descent is that it follows the gradient of the true generalization
error as long as no examples are repeated. Nevertheless, most
Implementations of minibatch stochastic gradient descent shuffle
the dataset once and then pass through it multiple times (epochs)
(i.e., the second path is unbiased) to reduce the training loss

B With extremely large training datasets, it IS becoming more
common to use each training example only once

Challenges in Neural Network Optimization (1)

H ||I-Conditioning:
« |ll-conditioning of Hessian matrix H can manifest by causing
SGD to get stuck in the sense that even very small steps

increase the cost function (i.e., —eg’ g + %engHg > 0):

1
f(x*—eg) =~ f(x°) —eg'g + EengHg

B [ocal Minima:

* Neural networks and any models with multiple equivalently
parametrized latent variables all have multiple local minima
because of the model identifiability problem (e.g, swapping
model weights may cause the same output (weight space
symmetry)). Today, it IS not considered problematic for
sufficiently large neural networks with early stopping

Challenges in Neural Network Optimization (2)

B Saddle Points:
« Saddle points are more common than local minima in neural
networks
« The Eigen values of Hessian matrix at a saddle point has both
positive negative value, which makes the optimization unstable.
Fortunately, Goodfellow(2015) showed that gradient descent
trajectory rapidly escaped this region unlike Newton’s method

B Cliffs and Exploding Gradients:

* Neural networks with many layers often have extremely steep
regions resembling cliff which may move the parameters quite
rapidly (especially in recurrent neural network). We can avoid
this by applying the gradient clipping in section 10

\B
b

Challenges in Neural Network Optimization (3)

B Long-Term Dependencies:

« When we need to repeatedly multiplying the same weights In
extremely deep graph (e.g., recurrent neural networks), the
vanishing and exploding gradient problem may occur. On the
other hand the feedforward network does not have this issue
since the weights are different (See details in section 10.7)

B Theoretical limits of Optimization

« Some theoretical results show that there exist problem classes
that are intractable by neural networks, but it can be difficult to
tell whether a particular problem falls into that class. It is also
difficult to tell whether an optimization algorithm gave the
solution we needed

* Developing more realistic bounds on the performance of
optimization algorithms therefore an important goal for
machine learning research

About Stochastic Gradient Descent

B It is common to decay the learning rate linearly until iteration t:
e 6, =0 —-a)ey+ae;, witha =k/t
« Usually 7 is set to the number of iterations required to make a
few hundred passes through the training set. e, should be set to
roughly 1 percent the value of €,. €, Is generally decided by
monitoring the first few iterations and using a learning rate that
IS higher than the best-performing learning rate at this time

B The convergence rate of the SGD for the convex problem is

0(1/k) or 0(1/vVk). Bousquet(2008) mentioned that it may not
be worthwhile to pursue an optimization algorithm that converges
faster than O(1/k) for machine learning tasks (faster convergence
corresponds to overfitting)

Momentum (1)

B Unfortunately, SGD can be slow. The momentum is designed to
accelerate learning, especially in the face of high curvature, small
but consistent gradient, or noisy gradients

B The momentum algorithm accumulates an exponentially decaying
moving average of past gradients and continues to move in their

direction

B The momentum algorithm introduces the velocity v, which is the
direction and speed at which the parameters move through

parameter space

v« —egt + avt~! = qvt?! —€V9< ZL(f(x 9))/))

0t —« 011+ vt =011 —egt + avt?

Momentum (2)

20

10

& 0
—10

—20

=l = , 30
~30 —20 =10 0 10 20 S .

1

10 20

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate e, momentum parameter o
Require: Initial parameter 8, initial velocity v
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:13(1), . ,:1:'('”‘")} with
corresponding targets y(“’;).
Compute gradient estimate: g « ?_—}LVQ > L(f(z'D;0),yD).
Compute velocity update: v < av — €g.
Apply update: @ + 0 + v.
end while

Momentum (3)

B If the momentum algorithm always observes gradient g, then it
will accelerate Iin the direction of —g, until reaching a terminal
velocity where the size of each step is €||g|| /(1 — a)

B Common values of a used in practice include 0.5, 0.9, 0.99. For
example 0.9 corresponds to multiplying the maximum speed by 10
relative to the gradient descent method. @« may also be adaptive
starting from the small value and is later raised.

Giving the force F = mw to the ball

Gradient

Momentum (4)

B Nesterov Momentum (Sutskever2013)

« A variance of the momentum algorithm that was inspired by
Nesterov’s accelerated gradient method (Nesterov1983). The
gradient Is evaluated after the current velocity is applied.
Nesterov Momemtum does not improve the rate of
convergence in the stochastic gradient

m
1 . .
vt e qut~l — v, (az L(f(xt; 081 + av),yl)>
=1

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

.
'

gradient Nesterov: the only difference...
step
vy = pvg—1 — €V f(Os—1 H pve_1))

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

Parameter Initialization (Weight)

B Some heuristics are available for choosing the initial scale of the

weights:

 Initialize the weights of a fully connected layer with m inputs and n outputs

by sampling each weight from the uniform distribution of U (— — i),

vm’m
» Glorot(2010) suggest using the normalized Initialization

Wl-j~U<—\/ 6 ,\/ 6 >
’ m+n m+n

« Saxe(2013) recommend initializing to random orthogonal matrices, with a
carefully chosen scaling or gain factor g that accounts for the nonlinearity
applied at each layer

« Martens(2010) introduced an alternative initialization scheme called sparse
Initialization, in which each unit is initialized to have exactly k nonzero
weights to avoid the weights being too small

« |t is also good idea to treat the initial scale of the weights as a hyper
parameter if computational resources allows it

Implementation In Keras Library

Ones [source]

keras.ini ones()

Initializer that generates tensors initialized to 1.

Constant [source]

keras.initializers.Constant(value=8)
Initializer that generates tensors initizlized to 2 constant value.

Arguments

value: float; the value of the generator tensors.

RandomNormal [source]

keras.initializers.RandomMormal(mean=2.9, stddev=.85, seed-None)
Initializer that generates tensors with 2 normal distribution.

Arguments

mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or ascalar

tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to seed the random
generator.

RandomUniform [source]

keras.initializers.RandomUniform{minval=-8.e5, maxval=g.95, sesd-None)

Initializer that generates tensors with 2 uniferm distribution.
Arguments
minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate. maxval: A python

scalar or ascalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types. seed:
A Python integer. Used to seed the random generator.

TruncatedMormal [source]

keras.initializers.Truncatediormal{mean=8.8, stddev=0.85, sesd-None)

Initializer that generates 2 truncated normal distribution.

These values are similar to values from 2 Randomiormal except thatvalues more than two standard deviations
fromthe mean are discarded and re-drawn. This is the recommended initializer for neural network weights and
filters.

Arguments

mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or ascalar

tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to seed the random
generator.

VarianceScaling [source]

keras.ini

ializers.VarianceScaling{scale=1.8, mode='fan_in', distribution='narmal’, sesd-Nene}

Initializer capable of adapting its scale to the shape of weights.

glorot_uniform
keras.initializers.glorot_uniform(sesd=None)

Glorat uniform inftizlizer, 2lso called Xavier uniforminitizlizer.

It draws samples from 2 uniform distribution within [-limit, limit] where 1imit is
sqrt{s / (fan_in + fan_cut)) where fan_in isthenumber ofinput unitsin the weight tensor and | fan_out

is the number of output units in the weight tensor.

Arguments

= seed: A Python integer. Used to seed the random generstor.

Returns

Aninitializer.

References

» Understanding the difficulty of training deep feedforward neursl networks

he_normal

keras.initializers.he_normal{sesd=None)
He normal initializer.

It draws samples from a truncated normal distribution centered on 0 with stddev = sqrr(2 / fzn_in) where
fan_in isthe number of input units in the weight tensor.

Arguments

« se=d: A Pythanintzger Used to seed the random generstor,
Returns

Aninitializer.

References

= Delving Deep inte Rectifiers: Surpassing Human-Level Performance on Imagehlet Classif

lecun_normal
keras. initializers.lecun_normal(seed=None)
LeCun normal initializer.

It draws samples from a truncated normal distribution centered on O with stddev = sqrt{1 / fan_in) where
fan_in is the number of input units in the weight tensor.

Arguments

= seed: A Pythoninteger. Used to seed the random generator.
Returns

Aninitializer.

References

= Self-Normalizing Neural Networks

oOrthogonal [source]
keras.initializers.Orthogonal(gain=1.8, seed=None)

Initializer that generates a random orthogonal matrix

Arguments

« gain: Multiplicative factor to apply to the orthogonal matrix

« seed: A Python integer. Used to seed the random generstor.

References

+ Exact solutions to the nonlinear dynamics of learning in deep linear neural networks

Identity [source]

keras.initializers.Identity(gain=1.8)
Initializer that generates the identity matrix.

Only use for 2D matrices. If the long side of the matrix is 2 multiple of the short side, multiple identity matrices are
concatenated along the long side.

Arguments

gain: Multiplicative factor to apply to the identity matrix.

lecun_uniform
keras.initializers.lacun_uniform{sesd=None)
LeCun uniform initializer.

Itdraws samples from 2 uniform distribution within [-fimit. limit] where limit is sgqrt{3 / fan_in) where
fan_in isthe number of input units in the weight tensor.

Arguments

« seed: A Python integer. Used to sesd the random generator.
Returns

Aninitializer.

References

+ Efficient BackBrop

glorot_normal

keras.initializers.glorot_normal{sesd=None)

Glorot normal initializer, 2lso called Xavier normal initializer.

Itdraws samples from 2 truncated normal distribution centered on 0 with
stddev = sqrt(2 / {fan_in + fan_out)) where fan_in is the number of input units inthe weight tensor and
fan_out | is the number of output units in the weight tensor.

Arguments

« seed: APython integer. Used to ssed the random generator.

Parameter Initialization (Bias)

B There are a few situations where we may set some biases to
nonzero values:

W If a bias Is for an output unit, then it i1s often beneficial to
Initialize the bias to obtain the right marginal statistics of the
output (e. g., softmax(b) = ¢ (output distribution))

B Sometimes we may want to choose the bias to avoid causing
too much saturation at initialization. For example, we may set
the bias of a ReL.U hidden unitto 0.1

W If we have a gate unit (decide if a unit is participate or not),
then we firstly want to choose the output of the unit is one by
adding the bias (e.g., LSTM model in chapter 10)

W Besides these random methods of initialization, it iIs possible to
Initialize model parameters using machine learning. A common
strategy is to initialize the supervised model using unsupervised
model trained on the same inputs (See Part 111)

Algorithms with Adaptive Learning Rate

B The learning rate is reliably one of the most difficult to set
hyperparameters because it significantly affects model

performance

B Here we introduce some important algorithms

 AdaGrad
« RMSProp I

. Adam

——— = sqgd
————— — momentum |]
] — nag
— adagrad E

adadelta

loss

— rmsprop

/f O

low learning rate

high learning rate

good learning rate

0 20 40 60 éU lCllU 120
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

v

t

AdaGrad (Duchi2011)

B AdaGrad individually adapts the learning rates of all parameters
by scaling them inversely proportional to the square root of the
sum of all the historical squared values of the gradient. Empirically,
the accumulation of squared gradients from the beginning of
training can result in excessive decrease in learning rate (e.g.,
passing points whose gradient is large at early steps)

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ¢

Require: Initial parameter 0

Require: Small constant §, perhaps 107, for numerical stability

Initialize gradient accumulation variable r =0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {2V, ... ™)} with
corresponding targets y(i).
Compute gradient: g + %Vg S L(f(2®:0),yW).
Accumulate squared gradient: » +—r+g ©g.

Compute update: A + — 5 |E\/F ® g. (Division and square root applied

element-wise)
Apply update: 8 «— 0 + AB.
end while

RMSProp (Hinton2012)

B RMSProp modifies AdaGrad to perform better in the nonconvex

setting by using exponentially decaying average to discard history
from the extreme past to avoid the gradient decreases too rapidly

Algorithm 8.5 The RMSProp algorithm
Require: Global learning rate €, decay rate p (e.g., 0.9)
Require: Initial parameter 6

Require: Small constant d, usually 10°°, used to stabilize division by small
numbers

Initialize accumulation variables 7 = (
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:c(l), R ¥ ("’”)_} with
corresponding targets y(f’).
Compute gradient: g < —-Vpg Z_i_L(f(w(‘),Q), y)).
Accumulate squared gradient: 7+ pr + (1 — p)g @ g.
Compute parameter update: AQ = —ﬁ ©g. (\/5—1_+'r applied element-wise)

Apply update: 8 «— 0 + A6. € =0.01

end while

Adam (Kingma2014)

B Adam is a combination of RMSProp and momentum. In Adam,
momentum Is incorporated directly as an estimate of the first-order
moment of the gradient. Adam includes bias corrections to the
estimates for both the first-order moments and the second-order
moments to account for their initialization at the origin

Algorithm 8.7 The Adam algorithm Sl = 09 * SO + 01 * g = Olg

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and po in [0, 1). _

(Suggested defaults: 0.9 and 0.999 respectively) f ! | r]_ —_ 0999 * T'O + 0001 * gz
Require: Small constant ¢ used for numerical stabilization (Suggested default: = OOO 1 gz

107%)
Require: Initial parameters @ S O 1g

Initialize 1st and 2nd moment variables s =0, r = 0 —
Initialize time step t =0 V r+ 6 1/ 000 192 + 6

while stopping criterion not met do

Sample a minibatch of m examples from the training set {a:(l). R ("”’)} with S 0 1 / 099
corresponding targets y(¥). — -

Compute gradient: g < FILVQ ZZL(]L‘(ZEU): 6),y") \/? + 5 \/OOO 192/0009 + 6
t—t+4+1

Momentum
RMSProp (with decay rate)

Update biased first moment estimate: s < p;s+ (1 — p1)g

Update biased second moment estimate: r < por + (1

Correct bias in first moment: § < ﬁ{

Correct bias in second moment: 7 <

Compute update: Af = —e

Apply update: 0 < 0 + AG\
end while

= rations applied element-wise)
T0

Approximate Second-Order Methods (1)

B Newton’s method

B In deep learning, the surface of the objective function typically
nonconvex, where eigenvalues of Hessian are not all positive
(i.e., local minima and saddle points). To avoid this, we can
regularize Hessian by adding a constant value along the
diagonal of the Hessian. However, only networks with a very
small number of parameters can be practically trained via
Newton’s method due to the significant computational burden.

Algorithm 8.8 Newton’s method with objective J(0) = %ﬁ oy L(f(z"; 0), -'_r;(""))

Require: Initial parameter 0
Require: Training set of m examples
while stopping criterion not met do
Compute gradient: g < T—ng > L(_)"(a}(f);f?), y('f-'))
Compute Hessian: H < r—i %D L(f(xD:0),yD)
Compute Hessian inverse: H ~1

Compute update: A = —H g — -1
Apply update: 8 = 0 + A6 Af = [H + al] g

end while

Approximate Second-Order Methods (2)

B Conjugate Gradient
W Efficiently avoids the calculation of the inverse Hessian by
iteratively descending conjugate directions (When plHp,_; =
0, p;and p,_;are conjugate w.r.t H).

Algorithm 8.9 The conjugate gradient method

Require: Initial parameters @
Require: Training set of m examples
Initialize py = 0
Initialize gop = 0
"=T_, Initialize t = 1

while stopping criterion not met do

X

Initialize the gradient g; = 0
Compute gradient: g; < + Vg Y. L(f(x; o), y(i))

T

/- t— Yt — ‘ f AT A
Compute 3, = L—Lg; |9fgl 9t (Polak-Ribiére)
t—19t—1

(Nonlinear conjugate gradient: optionally reset [to zero, for example if £ is
a multiple of some constant k, such as k = 5)
Compute search direction: p, = —g; + 5ip i1
Perform line search to find: €* = argmin, % >y L(f(x";0,+ epr), y(i))
(On a truly quadratic cost function, analytically solve for ¢* rather than
explicitly searching for it)
Apply update: 6,1 =60, + ¢*p,
t+—t+1

end while

conjugate orthogonal

Approximate Second-Order Methods (3)

B BFGS (Broyden-Fletcher-Goldfarb-Shanno algorithm)
B Attempts to bring some of the advantages of Newton’s method
without the computational burden by approximating Hessian
B The memory costs of the BFGS algorithm can be significantly
decreased (L-BFGS) by avoiding storing the complete inverse
Hessian approximation B, by assuming that B, Is a identity
matrix (sparse)

From an initial guess Xg and an approximate Hessian matrix By the following steps are repeated as X, converges to the solution:

1. Obtain a direction p;, by solving Bypy, = —V f(xx)-

2. Perform a one-dimensional optimization (line search) to find an acceptable stepsize ay, in the direction found in the first step, so
ap = argmin f(x; + ap;).

3. Set 8 = apPp;, and update Xgp1 = X + Si.

4.y = VF(xp) = VF(x).

vi¥i Bisisl By

T

5. By = B + .
¥, Sk SEB&S;;

Hy.. = (VkT“‘VkTm} H, {Vk T-'B"'Vk} I
+ o (VA'T T vaml I) 5033: {VL m+1""" VL)
+ M (V,lT : VkTm } 2) 81 ST {VL m+2" " VL)

Vi = I — pryis,, pr = 1/y; 81

T T T

Skyk yksk sksk

H,,=|I- H, |I - + .
o [yfsk] ' { } Y, S Hpi = VkTHka + pksksf

T
+ PiSkS;,

https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm

Batch Normalization

B Internal Covariate Shift (Shimodaira2000): Training deep neural
networks changes the distribution of each layer’s inputs during
training, even when the parameters of the previous layers slightly
change, which slows down the training by requiring lower learning
rates and careful parameter initialization

B Batch Normalization (BN, Loffe2015) is applied after the
activation to reparametrize the model to make units normalized by
a unit Gaussian (u = 0, ¢ = 1). For a layer with d-channel input

x = (xW, ..., x(@), we will normalize each dimension | _————
O i)
Vvar[aj(k)] 07 10K 20K 30K 40K 50K

B The expectation and variance are computed over the mini-batch

(e.g, x ..,x{®)). To maintain the expressive power, it is

common to use ax™ + B (a, B are learnable parameters)

09} 7

!
0.8}1

- = = Without BN
With BN

Group Normalization

B In BN, a small batch leads to inaccurate estimation of the batch
statistics, and reducing BN’s batch size increases the model error

dramatically

B Group Normalization (GN, Wu2018) divides channels into groups
and normalizes the features within each group. GN does not
exploit the batch dimension, and its computation is independent of

batch sizes

Batch Norm Group Norm 361

S >N S 34

=N T

Image ~ 2|
size sl
24

22

Channel

Batch size

—+Batch Norm

r|-e-Group Norm

32t

32

16 8 4 2
batch size (images per worker)

Supervised Pretraining

B Greedy algorithms

 break a problem into many components, then combine
Individually optimized component (the global optima is not

guaranteed)
 Often followed by the fine-tuning °\
B Greedy supervised algorithms B
 break a problem into many supervised learning problem
 Instead of pretraining one layer at a time, we can train a deep

convolutional network and then use the first and last few layers
to initialize even deeper networks @_,@

B FitNets (Romero2015)
« Firstly, train a teacher network and then train the student
network (deeper and thinner) with a supervision by the teacher

network (using a intermediate representations learned by a
teacher)

A+B

Coordinate Descent

B It may be possible to solve an optimization problem quickly by
minimizing a multivariate function w.r.t a single variable x; while
fixing x;. This practice is known as (block) coordinate descent

B For example, consider a cost function:
JH,W) = ZlHi,j| + Z(X - WTH);
Lj Lj

B The entire problem is nonconvex, but a subproblem w.r.t a single
variable (W, H) is convex

B Coordinate Descent is not a good strategy when variables are
strongly related e.g., f = (x; — x,)? + a(x? — x2)

Polyak Averaging

B Polyak Averaging (Polyak1992) consists of averaging several
points in the trajectory through parameter space visited by an
optimization algorithm:

A 1 : ,
6t = ?Z 6' 6 are points where gradient descent visited

B The basic idea is that the optimization algorithm may leap back
and forth across a valley several times without ever visiting a point
near the bottom of the valley. The average of all the locations on
either side should be close to the bottom of the valley though

B In nonconvex problems, it is typical to use an exponentially
decaying running average:

Ot = a1+ (1 — a)6t

Continuation Methods

B Continuation Methods
« Starting from solving the easiest problem and then refine the

solution to solve incrementally harder problems until we arrive
at a solution to the true underlying problem

Traditional continuation method Is based on smoothing
(blurring) the object function

Intuitively, some nonconvex functions become approximately
convex by being blurred to avoid the local minima

B Curriculum learning

the idea of planning a learning process to begin by
learning simple concepts and progress to learning
more complex concepts (e.g., animal training,
natural languages)

