Fundamentals of
Media Processing
(Machine Learning Part)

Lecturer:

k¥ E— (Prof SATO Shinichi)

B 0 (Prof. IKEHATA Satoshi) 10/27,11/10,11/17,11/21,12/1,12/8
LiE NE— (Prof. Junichi Yamagishi)

IBE # (Prof. KODAMA Kazuya)

%= ¥ (Prof. MO Hiroshi)

Chapter 1-9 (out of 20)

An introduction to a broad
range of topics in deep
learning, covering
mathematical and conceptual
background, deep learning
techniques used in industry,
and research perspectives.

* Due to my background, | will
mainly talk about “image”

e | will introduce some
applications beyond this book

Deep Learning

An MIT Press book in preparation

fellow, Yoshua Bengio and Aaron Courville l P

Book Exercises External Links

Lectures

We plan to offer lecture slides accompanying all chapters of this book. We currently offer slides for
only some chapters. If you are a course instructor and have your own lecture slides that are
relevant, feel free to contact us if you would like to have your slides linked or mirrored from this
site.

1. Introduction
o Presentation of Chapter 1, based on figures from the book [.key] [Lpdf]
o Video of lecture by Ian and discussion of Chapter 1 at a reading group in San Francisco
organized by Alena Kruchkova
. Linear Algebra [.key][.ndf]
. Probability and Information Theory [.key][.pdf]
. Numerical Computation [.key] [.pdf] [youtube]
. Machine Learning_Basics [.key] [.pdf]
. Deep Feedforward Networks [.key] [.pdf]
o Video (.flv) of a presentation by Ian and a group discussion at a reading group at Google
organized by Chintan Kaur.
. Regularization for Deep Learning [.pdf] [.key]
8. Optimization for Training_Deep Models
o Gradient Descent and Structure of Neural Network Cost Functions [.key] [.pdf]
These slides describe how gradient descent behaves on different kinds of cost function
surfaces. Intuition for the structure of the cost function can be built by examining a
second-order Taylor series approximation of the cost function. This quadratic function can
give rise to issues such as poor conditioning and saddle points. Visualization of neural
network cost functions shows how these and some other geometric features of neural

N LM

~J

Free copy of the book and useful
materials are available at

https://www.deeplearningbook.or
g/lecture_slides.html

Schedule

10/27 (Today) Introduction Chap. 1

probability, information theory, numerical computation Chap. 2,3,4

11/10 Machine Learning Basics Chap.5
11/17,11/24,12/1 Deep Feedforward Networks Chap. 6
Regularization and Deep Learning Chap. 7

Optimization for Training Deep Models chap.8

12/8 Convolutional Neural Networks Chap. 9 and more

Regularization for Deep Learning

Parameter Norm Penalties

B Regularization is important for the neural networks to work for the
generalization (by avoiding over-under-fitting)

B Many regularization approaches are based on limiting the capacity
of models by adding a parameter norm penalty (@) to the
objective function J as: J(0; X,y) = J(0; X,y) + aQ(0)

B Different choices for the parameter norm can result in different
solutions being preferred. It is often happing that we use different
a for different layers

B In neural networks, we typically chose to parameter norm
penalty that penalizes only the weights of the affine
transformation at each layer and leave the bias unregularized
since the bias does not require much data to fit

L2 Parameter Regularization (1)

B |2 parameter norm is called as weight decay, ridge regression or
Tikhonov regularization

J(@;X,9) = 07w +](@;X,)

Vol (@;X,y) = aw + V] (w; X, y)
wew—¢elaw+V,J(w;X,y) = (1 —ea)w— eV,]J(w; X,)
B \\e can see that the addition of the weight decay term has

modified the learning rule to multiplicatively shrink the weight
vector by a constant factor on each step

L2 Parameter Regularization (2)

B Assuming that /(w; X,y) = J(w), then the second order Tayler
expansion around a critical point w™ Is

J() =J(@") +5 (@ - 0)Hw - o), V,/(0)=0

B j(w) = () + - ", the minimum of J(w) occurs where its

gradient: aw + H(w — 0*) =0

— T
w=(H+al) 'Hw* H = QAQ

(eigen decomposition)

w=0A+ a) A0 w*

B As «a Increases, weight decay rescales w™ along the axis defined
by the eigenvectors of H.

L2 Parameter Regularization (3)

(<
/’_\'«\——/

o™ — | —
< ~ \Ww \
/ — -~ \

/ — N\ \ \

~

|f 1
NI
S

\ + /}

\ L,/
~ Y

Figure 7.1: An illustration of the effect of L? (or weight decay) regularization on the value
of the optimal w. The solid ellipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the L? regularizer. At
the point w, these competing objectives reach an equilibrium. In the first dimension, the
eigenvalue of the Hessian of .J is small. The objective function does not increase much
when moving horizontally away from w”*. Because the objective function does not express
a strong preference along this direction, the regularizer has a strong effect on this axis.
The regularizer pulls w close to zero. In the second dimension. the objective function
is very sensitive to movements away from w”. The corresponding eigenvalue is large,
indicating high curvature. As a result., weight decay affects the position of ws relatively
little.

L2 Parameter Regularization (4)

B Assuming that J(w; X,y) = Xw —)T (Xw —y) + %wTw, then:
o =X"X)"'X"y
w=X"X+a) X"y

B [2 regularization causes the learning algorithm to “perceive” the
Input X as having higher variance, which makes it shrink the
weights on features whose covariance with the output target is low
compared to this added variance

L1 Parameter Regularization (1)

B L1 regularization results in the solution that is more sparse

B L1 regularization on the model parameter w is defined as
A w) = llwlly
J(;X,y) = allwl|l; +](w; X, y)
V,J/(w; X,y) = asign(w) + V] (w; X,y)

B Assuming that the Hessian matrix H is diagonal (i.e., if the data for
the linear regression problem has been preprocessed to remove all
correlation between the input features by e.g., PCA),

R 1
J(w; X,y) = (0% X,y) + Z (EHi,i(wi - wi)* + “|wi|>

l

L1 Parameter Regularization (2)

1.

R 1
J(w; X,y) = (0 X,y) + z (EHi,i(wi - i)+ “|wi|>

a
w; = sign(w;) max{la),’;kl - —, O}
H;;
In the case where w; < a/H;;, the optimal value of w; under the
regularized objective is simply w;=0. This occurs because the

contribution of J to the regularized objective function J is

overwhelmed, in direction I, by L1 regularization (sparsity)
In the case where w; > a/H; ;, the regularization does not move

the optimal value of w; to zero but just instead shifts it in that
direction by a distance equal to a/H; ;

Review: L1 vs L2 Regularizer

m]1:
* Does variable selection
 More robust to outliers

m 2
* More computationally efficient
* Penalizes large numbers more
» Good when encountering collinearity
* More popular

Norm Penalties as Constrained Optimization

B Assume we want to minimize a function subject to constrains, we
can construct a generalized Lagrange function composed of KKT
multiplier and a function representing whether the constraint is
satisfied. If we constraint () to be less than k:

J(0;X,y) =](6;X,y) + aQ(0)
LO,a;X,y) =](6;X,y) + a(Q(O) — k)

0" = arg mln max L(0,a;X,y)

a,az0
B The reason to use epr|C|t constraints rather than penalties

(i.,e, minaw'w - s.t.,aw’w < k) is;

a. When we need proper k, and do not waste time to find

b. Penalties try to w to be zero, which may make the gradient
extreamely small (dead unit), instead, the explicit constraint
Imposes some stability on the optimization procedure

Dataset Augmentation

B The best way to make a machine learning model generalize better is
to train it on more data. However if it is difficult, we can create fake
data and add it to the training set. This is called data augmentation

B In the image classification task, it is common to flip and rotate
Images

B Since the neural network is not robust to noises, it is also common
to inject noises to input. Noises are often added to hidden units to
Improve the robustness (Poole2014)

T W
‘i A
5 Data augmentation

RN 8§

https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dclbaec

Noise Robustness

B For some models, the addition of noise with infinitesimal variance
at the input of the model is equivalent to imposing a penalty on the
norm of the weights (Bishop1995). In the general case, noise
Injection can be much more powerful than simply shrinking the
parameters, especially when the noises are added to hidden units
(e.g., dropout)

B Another way that noise has been used is by adding it to the weights.
Noise applied to the weights can be interpreted as equivalent to a
more traditional form of regularization, encouraging stability of the
function to be learned

B The training label is often incorrect. To improve the robustness of
the model to the errors in the data, we may inject noise at the output
target in the form of label smoothing (Salimans2016): by replacing
the classification output (e.g., 1t0 0.7~1.2, 0to 0 to 0.3)

Semisupervised Learning

B Both unlabeled examples from P(x) and labeled examples from
P(x,y) are used to estimate P(y|x) or predict y from x

B In the context of deep learning, semisupervised learning usually
refers to learning a representation h = f(x). The goal Is to learn a
representation so that examples from the same class have similar
representations

Labeled Dataset |
RGB

(a) A supervised multimodal deep learning framework

depth

JusiiiiiilF
e ——
[E—

- “depth-DCNN depth features
Labeled Dataset | y/’ =

—f [|
|

)
* depth-DCNN depth features T
| p— RGB™ D == RGB
t ' ————— ! classifier
. * e e RGB-DCNN RGB features W—

RGB-DCNN pGR features

Unlabeled Dataset

(b) Our semi-supervised multimodal deep learning framework

auto-labeled data

https://www.researchgate.net/figure/The-structures-of-a-supervised-and-b-semisupervised-multimodal-deep-learning-for_figl 301227188

Multitask Learning

B Multitask Learning (Caruanal993) is a way to improve

generalization by pooling the examples arising out of several tasks

| Semantic

Decoder

| Instance |,

Decoder

Shared weights over tasks

Depth
Decoder

Different weights for different tasks

http://ruder.io/multi-task/

Semantic
Task
Uncertainty

Instance
Task
Uncertainty

Depth
Task
Uncertainty

Multi-Task
Loss

Early Stopping (1)

B \alidation error generally begins rise after some iterations due to
overfitting

B To avold this, we can use early stopping, which can be seen as a
very efficient hyperparameter selection algorithm (the number of
training steps are also considered as hyperparameter)

W Early stopping is considered as a L2 regularizer when then number
of steps is small (i.e., a decreases as steps increases, see detalils in
the book) - 020 , , . 1

e Training set loss

0.15 —— Validation set loss |4

0.10

p—
-
—
-
n

Loss (negative log-likelihood

0 510 100 150 200 250

Time (epochs)

Early Stopping (2)

Let n be the number of steps between evaluations.
Let p be the “patience,” the number of times to observe worsening validation set
error before giving up.
Let @, be the initial parameters.
60— 0,
i+ 0
j 0
U 4= 00
0" — 0
it
while j < p do
Update @ by running the training algorithm for n steps.
14— 1+n
v’ + ValidationSetError(0)
if v/ < v then
j+0
G —0
P
v
else
j—j+1
end if
end while

Best parameters are 8°, best number of training steps is i*.

Early Stopping (3)

B First training with validation set to decide the number of steps.
Then use all data to estimate the final parameters

Algorithm 7.2 A meta-algorithm for using early stopping to determine how long
to train, then retraining on all the data.

Let X (train) apq o(train) he the training set.

g[}lit X{t.rﬂiu] and y{t.rﬂiu] into (X{suhlrain} X{valid]) and (y{suhlrnin} y{valid])
respectively.

Run early stopping (algorithm 7.1) starting from random 6 using X (Subtrain) 4y,
ysubtrain) o1 training data and XV and y(valid) for validation data. This
returns ¢, the optimal number of steps.

Set @ to random values again.

Train on X (0ain) gy g(train) {61 3% gteps.

Early Stopping (4)

B Another strategy is to keep the parameters obtained from the
first round of training and then continue training, but now
using all the data until it falls below the value of the training
set objective at which the early stopping procedure halted

Algorithm 7.3 Meta-algorithm using early stopping to determine at what objec-
tive value we start to overfit, then continue training until that value is reached.

Let X (train) ap o(train) he the training set.
Split X (ain) and glirain) jypo (X (subtrain) = xg(valid)y gy g (gy(subtrain) =g (valid))
respectively.
Run early stopping (algorithm 7.1) starting from random 6 using X Subtrain)
ylsubtrain) £ training data and XVald) and ¢ alid) for validation data. This
updates 0.
¢ ¢ J(@, X (subtrain) y(subtrain))
while .J(0, X (valid) 4, (valid)) ~ ¢ do

Train on X (rain) and ofrain) for o steps.

end while

Parameter Tying and Parameter Sharing

B Assume we have model A with parameter w, and model B
with parameter wg. If we know the tasks are similar enough,

we can leverage this information to constrain the model

Task Al |Task B| [Task C| Task-
i i | specific Task A Task B Task C
layers f | i
i 1 1
f 1 1 i
Shared — —
; layers f 1 i

Hard parameter sharing

(wy = wg)

http://ruder.io/multi-task/

Soft parameter sharing
(lwg — wpll <€)

Constrained
layers

Representational Sparsity

B \We can place the penalty on the activations of the units in a
neural network, encouraging their activations to be sparse

]~(9; X,)’) =](9; X, y) + af)(0) Penalty on the parameter
J(8;X,y) =](0;X,y) + aQ(h) Penalty on the activation

-‘ [3 1 2 5 4 1

4 2 3 1 1 3

19 I = I 1 5 4 2 3 2
J [2 3 0

Q(h) = ||kl

3

;|
) |
|
J

B Other representational sparsity penalties include one derived
from a Student t prior on the representation (Olshusen1996),
KL divergence penalty (Larochelle2008), regularizing the
average activation across several examples (Goodfellow2009)
and orthogonal pursuit (Pati1993)

Bagging and Other Ensemble Methods

B Bagging (short for bootstrap aggregating), model averaging or
ensemble method is a technique for reducing generalization error
by training several uncorrelated models separately, then have all
the models vote on the output for test examples (Breiman1994).

B <%Ze> = TE(7) + E(eig) = 0

=1

1al dataset

010)¢s

mpled dataset

s @ O@ > @ >)

fromthe original ..o.d resampled datase

OlolLEZGEI0)

Dropout (1)

B Dropout (Srivastava2014) trains the ensemble consisting of
all subnetworks that can be formed by removing nonoutput
units from an underlying base network. We can do it by simply
multiplying output values of each unit by zero

B To train with dropout, we use a
minibatch-based learning algorithm
such as stochastic descent. Each
time we load an example into a
minibatch, we randomly sample
(Pdropout; €.9., 0.8 for input, 0.5
for hidden units) a different binary
mask to apply to all the input and
hidden units in the network

ogo
oje

ORBORNONNO
G‘QGQGQ (22
CICINC/CHNCIC
ORNONNORNO
ONNICXC
O ©® CIC/INC
ORNONNONNO)
Ol O (%9

() O |®

ORNONNONNO
©

Ensemble of subnetworks

Dropout (3)

B Different from bagging, dropout shares the parameters among
models, and each model differs slightly for each step. Beyond
these dropout follows the bagging algorithm (e.g., the training
set encountered by each subnetwork is indeed a subset of the
original training set sampled with replacement)

2.5

g
[=)

Without dropout |
. A /A /\ Y M

NS A A AL AR

—
v
T

Classification Error %

With dropout

ALY o A WA [
V™ V 3 U 2\ N ~
\ " A OF S { ’
i Sy TN YN e ey A .
v v 7 \ D A
1.0} ¥ \ /-\/\f“” i,

0 200000 400000 600000 800000 1000000
Number of weiaht updates

https://cedar.buffalo.edu/~srihari/CSE676/7.12%20Dropout.pdf

Dropout (4)

B Prediction of the network with dropout
® Arithmetic mean: the arithmetic mean of the probability
distribution for each model with different mask (u; 10-20
masks practically) is given by:

Pensemble (Y|x) = Z p(ﬂ)p(YIx: 7
u

® Geometric mean: the unnormalized probability distribution

defined directly by the geometric mean is given by
d is the number of units dropped

~ d
Pensemble (Y|x) = 2\/1_[p(y|x, u) Pensembie (VX)) =
u

Densembie (Y [x)
> Pensembie (Y[x)

B Key insight is that with geometric mean, we can approximate
Pensemble DY €valuating p(y|x, u) in one model: the model with
all units, but with the weights going out of unit i multiplied by the
probability of including unit I (weight scaling inference rule)

Dropout (5)

B Advantages of dropout Is:

« Computationally cheap. O(n) computation per example per
update to generate n random binary numbers and multiply them
by the state. Depending on the implementation, but it generally
requires O(n) memory to store those binary numbers

* |t does not significantly limit the model or training procedure

B \While the computationally efficient, we may need larger size of
network to make the dropout work effectively. In addition, we may
need sufficiently amount of training data for making dropout
effective

B Another deep learning algorithm, batch normalization,
reparametrizes the model in a way that introduces both additive
and multiplicative Nosie (dropout is only multiplicative) on the
hidden units at training time, often makes dropout unnecessary

Adversarial Training

B Even neural networks have a nearly 100 percent error rate on
examples x' that are intentionally constructed so that they are close
to x but the model output Is quite different. Those examples are
called as adversarial examples

B Goodfellow analyzed this was caused by the highly linearity of the
model (even with the nonlinear activation). To avoid this, the
network should be trained with adversarial examples to assign the
same label to x and x’

|
-

+ 007 x

@ sign(VgJ(0,x,y)) esign(Vad (8, 2,1))
y ="panda” “nematode” “gibbon”

w/ 57.7% w/ 8.2% w/ 99.3%

confidence confidence confidence

Tangent Propagation

B Tangent propagation trains network so that the network outputs
similar labels along the manifold that was manually specified

W \Working in similar manner with data augmentation or adversarial
training (try to learn the function that does not change the output)

B For eliminating the need to know the tangent vectors a priori,
manifold tangent classifier (Rifai2011) had been proposed taking
advantages of autoencoder to estimate the manifold tangent vectors

Figure 7.9: lllustration of the main idea of the tangent prop algorithm (

) and manifold tangent classifier (.), which both regularize the
classifier output function f(a). Each curve represents the manifold for a different class,
illustrated here as a one-dimensional manifold embedded in a two-dimensional space.
On one curve. we have chosen a single point and drawn a vector that is tangent to the
class manifold (parallel to and touching the manifold) and a vector that is normal to the
class manifold (orthogonal to the manifold). In multiple dimensions there may be many
tangent directions and many normal directions. We expect the classification function to
change rapidly as it moves in the direction normal to the manifold. and not to change as
it moves along the class manifold. Both tangent propagation and the manifold tangent
classifier regularize f(ax) to not change very much as @ moves along the manifold. Tangent
propagation requires the user to manually specify functions that compute the tangent
directions (such as specifving that small translations of images remain in the same class
manifold), while the manifold tangent classifier estimates the manifold tangent directions
by training an autoencoder to fit the training data. The use of autoencoders to estimate
manifolds is described in chapter 14.

Normal

Tangent

