
Fundamentals of
Media Processing

(Machine Learning Part)

Lecturer:
佐藤 真一（Prof. SATO Shinichi）
池畑 諭（Prof. IKEHATA Satoshi）10/27, 11/10, 11/17, 11/21, 12/1, 12/8
山岸 順一（Prof. Junichi Yamagishi）
児玉 和也（Prof. KODAMA Kazuya）
孟 洋（Prof. MO Hiroshi）

An introduction to a broad

range of topics in deep

learning, covering

mathematical and conceptual

background, deep learning

techniques used in industry,

and research perspectives.

Chapter 1-9 (out of 20)

• Due to my background, I will
mainly talk about “image”

• I will introduce some
applications beyond this book

https://www.deeplearningbook.or
g/lecture_slides.html

Free copy of the book and useful
materials are available at

10/27 (Today)

probability, information theory, numerical computation

11/10

11/17, 11/24, 12/1

Regularization and Deep Learning

Optimization for Training Deep Models

12/8

Chap. 2,3,4

Chap. 1

Chap. 5

Chap. 6

Chap. 7

Chap. 8

Chap. 9 and more

Machine Learning Basics

Introduction

Deep Feedforward Networks

Schedule

Convolutional Neural Networks

Regularization for Deep Learning

Parameter Norm Penalties

◼ Regularization is important for the neural networks to work for the

generalization (by avoiding over-under-fitting)

◼ Many regularization approaches are based on limiting the capacity

of models by adding a parameter norm penalty Ω(𝜃) to the

objective function 𝐽 as: ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝜽)

◼ Different choices for the parameter norm can result in different

solutions being preferred. It is often happing that we use different

𝛼 for different layers

◼ In neural networks, we typically chose to parameter norm

penalty that penalizes only the weights of the affine

transformation at each layer and leave the bias unregularized

since the bias does not require much data to fit

L2 Parameter Regularization (1)

ሚ𝐽 𝝎; 𝑋, 𝒚 =
𝛼

2
𝝎𝑇𝝎+ 𝐽 𝝎; 𝑋, 𝒚

◼ L2 parameter norm is called as weight decay, ridge regression or

Tikhonov regularization

∇𝝎 ሚ𝐽 𝝎; 𝑋, 𝒚 = 𝛼𝝎 + ∇𝝎𝐽 𝝎; 𝑋, 𝒚

𝝎 ← 𝝎− 𝜖 𝛼𝝎 + ∇𝝎𝐽 𝝎; 𝑋, 𝒚 = 1 − 𝜖𝛼 𝝎 − 𝜖∇𝝎𝐽 𝝎; 𝑋, 𝒚

◼ We can see that the addition of the weight decay term has

modified the learning rule to multiplicatively shrink the weight

vector by a constant factor on each step

L2 Parameter Regularization (2)

◼ Assuming that 𝐽 𝝎; 𝑋, 𝒚 = 𝐽(𝝎), then the second order Tayler

expansion around a critical point 𝝎∗ is

𝐽 𝝎 = 𝐽 𝝎∗ +
1

2
𝝎−𝝎∗ 𝑇𝐻 𝝎−𝝎∗ , ∇𝝎𝐽 𝜔

∗ = 0

◼ መ𝐽 𝝎 = 𝐽 𝝎 +
𝛼

2
𝝎𝑇𝝎, the minimum of መ𝐽 𝝎 occurs where its

gradient:
𝛼𝝎 + 𝐻 𝝎−𝝎∗ = 0

𝝎 = 𝐻 + 𝛼𝐼 −1𝐻𝝎∗

◼ As 𝛼 increases, weight decay rescales 𝝎∗ along the axis defined

by the eigenvectors of 𝐻.

𝝎 = 𝑄 Λ + 𝛼𝐼 −1Λ𝑄𝑇𝝎∗

𝐻 = 𝑄Λ𝑄𝑇

(eigen decomposition)

L2 Parameter Regularization (3)

L2 Parameter Regularization (4)

◼ L2 regularization causes the learning algorithm to “perceive” the

input X as having higher variance, which makes it shrink the

weights on features whose covariance with the output target is low

compared to this added variance

◼ Assuming that 𝐽 𝝎; 𝑋, 𝒚 = 𝑋𝝎 − 𝒚 𝑻 𝑋𝝎 − 𝒚 +
𝛼

2
𝝎𝑇𝝎, then:

𝝎 = 𝑋𝑇𝑋 + 𝛼𝐼 −1𝑋𝑇𝒚

𝝎∗ = 𝑋𝑇𝑋 −1𝑋𝑇𝒚

L1 Parameter Regularization (1)

◼ L1 regularization on the model parameter 𝝎 is defined as

Ω 𝝎 = 𝝎 1

ሚ𝐽 𝝎; 𝑋, 𝒚 = 𝛼 𝝎 1 + 𝐽 𝝎; 𝑋, 𝒚

∇𝝎 ሚ𝐽 𝝎; 𝑋, 𝒚 = 𝛼sign(𝝎) + ∇𝝎𝐽 𝝎; 𝑋, 𝒚

◼ Assuming that the Hessian matrix 𝐻 is diagonal (i.e., if the data for

the linear regression problem has been preprocessed to remove all

correlation between the input features by e.g., PCA),

መ𝐽 𝝎; 𝑋, 𝒚 = 𝐽 𝝎∗; 𝑋, 𝒚 +෍

𝑖

1

2
𝐻𝑖,𝑖 𝜔𝑖 − 𝜔𝑖

∗ 2 + 𝛼|𝜔𝑖|

◼ L1 regularization results in the solution that is more sparse

L1 Parameter Regularization (2)

መ𝐽 𝝎; 𝑋, 𝒚 = 𝐽 𝝎∗; 𝑋, 𝒚 +෍

𝑖

1

2
𝐻𝑖,𝑖 𝜔𝑖 −𝜔𝑖

∗ 2 + 𝛼|𝜔𝑖|

𝜔𝑖 = sign 𝜔𝑖
∗ max 𝜔𝑖

∗ −
𝛼

𝐻𝑖,𝑖
, 0

1. In the case where 𝜔𝑖
∗ ≤ 𝛼/𝐻𝑖,𝑖, the optimal value of 𝜔𝑖 under the

regularized objective is simply 𝜔𝑖=0. This occurs because the

contribution of 𝐽 to the regularized objective function ሚ𝐽 is

overwhelmed, in direction i, by L1 regularization (sparsity)

2. In the case where 𝜔𝑖
∗ > 𝛼/𝐻𝑖,𝑖, the regularization does not move

the optimal value of 𝜔𝑖 to zero but just instead shifts it in that

direction by a distance equal to 𝛼/𝐻𝑖,𝑖

Review: L1 vs L2 Regularizer

◼ L1:

• Does variable selection

• More robust to outliers

◼ L2:

• More computationally efficient

• Penalizes large numbers more

• Good when encountering collinearity

• More popular

Norm Penalties as Constrained Optimization

ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝜽)

◼ Assume we want to minimize a function subject to constrains, we

can construct a generalized Lagrange function composed of KKT

multiplier and a function representing whether the constraint is

satisfied. If we constraint Ω to be less than k:

ℒ 𝜽, 𝛼; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼(Ω 𝜽 − 𝑘)

𝜽∗ = argmin
𝜃

max
𝛼,𝛼≥0

ℒ 𝜽, 𝛼; 𝑋, 𝒚

◼ The reason to use explicit constraints rather than penalties

(i. e., min𝛼𝝎𝑇𝝎 → s. t. , 𝛼𝝎𝑇𝝎 ≤ 𝑘) is;

a. When we need proper k, and do not waste time to find 𝛼
b. Penalties try to 𝝎 to be zero, which may make the gradient

extreamely small (dead unit), instead, the explicit constraint

imposes some stability on the optimization procedure

Dataset Augmentation

◼ The best way to make a machine learning model generalize better is

to train it on more data. However if it is difficult, we can create fake

data and add it to the training set. This is called data augmentation

◼ In the image classification task, it is common to flip and rotate

images

◼ Since the neural network is not robust to noises, it is also common

to inject noises to input. Noises are often added to hidden units to

improve the robustness (Poole2014)

https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec

Noise Robustness

◼ For some models, the addition of noise with infinitesimal variance

at the input of the model is equivalent to imposing a penalty on the

norm of the weights (Bishop1995). In the general case, noise

injection can be much more powerful than simply shrinking the

parameters, especially when the noises are added to hidden units

(e.g., dropout)

◼ Another way that noise has been used is by adding it to the weights.

Noise applied to the weights can be interpreted as equivalent to a

more traditional form of regularization, encouraging stability of the

function to be learned

◼ The training label is often incorrect. To improve the robustness of

the model to the errors in the data, we may inject noise at the output

target in the form of label smoothing (Salimans2016): by replacing

the classification output (e.g., 1 to 0.7~1.2, 0 to 0 to 0.3)

Semisupervised Learning

◼ Both unlabeled examples from 𝑃 𝑥 and labeled examples from

𝑃 𝑥, 𝑦 are used to estimate 𝑃 𝑦|𝑥 or predict 𝑦 from 𝑥

◼ In the context of deep learning, semisupervised learning usually

refers to learning a representation ℎ = 𝑓(𝑥). The goal is to learn a

representation so that examples from the same class have similar

representations

https://www.researchgate.net/figure/The-structures-of-a-supervised-and-b-semisupervised-multimodal-deep-learning-for_fig1_301227188

Multitask Learning

◼ Multitask Learning (Caruana1993) is a way to improve

generalization by pooling the examples arising out of several tasks

Shared weights over tasks

Different weights for different tasks

http://ruder.io/multi-task/

Early Stopping (1)

◼ Validation error generally begins rise after some iterations due to

overfitting

◼ To avoid this, we can use early stopping, which can be seen as a

very efficient hyperparameter selection algorithm (the number of

training steps are also considered as hyperparameter)

◼ Early stopping is considered as a L2 regularizer when then number

of steps is small (i.e., 𝛼 decreases as steps increases, see details in

the book)

Early Stopping (2)

Early Stopping (3)

◼ First training with validation set to decide the number of steps.

Then use all data to estimate the final parameters

Early Stopping (4)

◼ Another strategy is to keep the parameters obtained from the

first round of training and then continue training, but now

using all the data until it falls below the value of the training

set objective at which the early stopping procedure halted

Parameter Tying and Parameter Sharing

Hard parameter sharing

(𝝎𝐴 = 𝝎𝐵)
Soft parameter sharing

(𝝎𝐴 −𝝎𝑩 ≤ 𝜖)

http://ruder.io/multi-task/

◼ Assume we have model A with parameter 𝜔𝐴 and model B

with parameter 𝜔𝐵. If we know the tasks are similar enough,

we can leverage this information to constrain the model

Representational Sparsity

◼ We can place the penalty on the activations of the units in a

neural network, encouraging their activations to be sparse

ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝒉)

ሚ𝐽 𝜽; 𝑋, 𝒚 = 𝐽 𝜽; 𝑋, 𝒚 + 𝛼Ω(𝜽) Penalty on the parameter

Penalty on the activation

Ω 𝒉 = 𝒉 1

◼ Other representational sparsity penalties include one derived

from a Student t prior on the representation (Olshusen1996),

KL divergence penalty (Larochelle2008), regularizing the

average activation across several examples (Goodfellow2009)

and orthogonal pursuit (Pati1993)

Bagging and Other Ensemble Methods

◼ Bagging (short for bootstrap aggregating), model averaging or

ensemble method is a technique for reducing generalization error

by training several uncorrelated models separately, then have all

the models vote on the output for test examples (Breiman1994).

𝔼
1

𝑘
෍

𝑖=1

𝑘

𝜖𝑖

2

=
1

𝑘
𝔼 𝜖𝑖

2 ∵ 𝔼 𝜖𝑖𝜖𝑗 = 0

Replacement

from the original

Dropout (1)

◼ Dropout (Srivastava2014) trains the ensemble consisting of

all subnetworks that can be formed by removing nonoutput

units from an underlying base network. We can do it by simply

multiplying output values of each unit by zero

◼ To train with dropout, we use a

minibatch-based learning algorithm

such as stochastic descent. Each

time we load an example into a

minibatch, we randomly sample

(𝑝dropout; e.g., 0.8 for input, 0.5

for hidden units) a different binary

mask to apply to all the input and

hidden units in the network

Dropout (2)

Dropout (3)

◼ Different from bagging, dropout shares the parameters among

models, and each model differs slightly for each step. Beyond

these dropout follows the bagging algorithm (e.g., the training

set encountered by each subnetwork is indeed a subset of the

original training set sampled with replacement)

https://cedar.buffalo.edu/~srihari/CSE676/7.12%20Dropout.pdf

Dropout (4)

◼ Prediction of the network with dropout

⚫ Arithmetic mean: the arithmetic mean of the probability

distribution for each model with different mask (𝝁; 10-20

masks practically) is given by:

⚫ Geometric mean: the unnormalized probability distribution

defined directly by the geometric mean is given by

◼ Key insight is that with geometric mean, we can approximate

𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 by evaluating 𝑝(𝑦|𝑥, 𝝁) in one model: the model with

all units, but with the weights going out of unit i multiplied by the

probability of including unit i (weight scaling inference rule)

𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙 =෍

𝝁

𝑝 𝝁 𝑝(𝑦|𝒙, 𝝁)

෤𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙 =
2𝑑

ෑ

𝝁

𝑝(𝑦|𝑥, 𝝁) 𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙 =
෤𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙

∑෤𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙

d is the number of units dropped

Dropout (5)

◼ Advantages of dropout is:

• Computationally cheap. O(n) computation per example per

update to generate n random binary numbers and multiply them

by the state. Depending on the implementation, but it generally

requires O(n) memory to store those binary numbers

• It does not significantly limit the model or training procedure

◼ While the computationally efficient, we may need larger size of

network to make the dropout work effectively. In addition, we may

need sufficiently amount of training data for making dropout

effective

◼ Another deep learning algorithm, batch normalization,

reparametrizes the model in a way that introduces both additive

and multiplicative Nosie (dropout is only multiplicative) on the

hidden units at training time, often makes dropout unnecessary

Adversarial Training

◼ Even neural networks have a nearly 100 percent error rate on

examples 𝑥′ that are intentionally constructed so that they are close

to 𝑥 but the model output is quite different. Those examples are

called as adversarial examples

◼ Goodfellow analyzed this was caused by the highly linearity of the

model (even with the nonlinear activation). To avoid this, the

network should be trained with adversarial examples to assign the

same label to 𝑥 and 𝑥′

Tangent Propagation

◼ Tangent propagation trains network so that the network outputs

similar labels along the manifold that was manually specified

◼Working in similar manner with data augmentation or adversarial

training (try to learn the function that does not change the output)

◼ For eliminating the need to know the tangent vectors a priori,

manifold tangent classifier (Rifai2011) had been proposed taking

advantages of autoencoder to estimate the manifold tangent vectors

