
Fundamentals of
Media Processing

Lecturer:

池畑 諭（Prof. IKEHATA Satoshi）
児玉 和也（Prof. KODAMA

Kazuya）

Support:

佐藤 真一（Prof. SATO Shinichi）
孟 洋（Prof. MO Hiroshi）

Course Overview (15 classes in total)

1-10 Machine Learning by Prof. Satoshi Ikehata

11-15 Signal Processing by Prof. Kazuya Kodama

Grading will be based on the final report.

10/16 (Today) Introduction

10/23 Basic mathematics (1) (Linear algebra, probability, numerical computation)

10/30 Basic mathematics (2) (Linear algebra, probability, numerical computation)

11/6 Machine Learning Basics (1)

11/20 Deep Feedforward Networks

11/27 Regularization and Deep Learning

12/4 Optimization for Training Deep Models

12/11 Convolutional Neural Networks and Its Application (1)

12/18 Convolutional Neural Networks and Its Application (2)

11/13 Machine Learning Basics (2)

Basic of Machine Learning (Maybe for beginners)

Basic of Deep Learning

CNN and its Application

Chap. 2,3,4

Chap. 2,3,4

Chap. 1

Chap. 5

Chap. 5

Chap. 6

Chap. 7

Chap. 8

Chap. 9 and more

Chap. 9 and more

Machine Learning Basics

What is Machine Learning?

A computer program is said to learn from experience E

with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measures P,

improves with experience E (By Mitchell (1997))

• Task, T

• Classification

• Regression

• Transcription

• Machine translation

• Structured output

• Anomaly detection

• Synthesis and sampling

• Imputation of missing values

• Denoising

• Density estimation

• …

• Performance Measure, P

• Accuracy

• Error rate

• …

• Experience, E

• Supervised (data with label)

• Unsupervised (unlabeled data)

• Semisupervised (both)

• Reinforcement learning

• …

Linear Regression

• Task T: Take a vector 𝒙 ∈ ℝ𝑛 as input and predict the value ො𝑦 ∈ ℝ as 𝝎𝑇𝒙

ො𝑦 = 𝝎𝑇𝒙

• 𝝎 ∈ ℝ𝑛 is a vector of parameters (weights)

• Performance Measure P: MSEtest =
1

𝑚
σ𝑖 ෝ𝑦𝑖

test − 𝑦𝑖
test 2

• Experience E: We have a set of (𝒙, 𝒚): Divided into test and training sets

∇MSEtest = 0 ⟺ ∇𝝎
1

𝑚
ෝ𝒚 − 𝒚train

2

2
= 0 ⟺ ∇𝝎

1

𝑚
𝑋train𝝎− 𝒚train

2

2
= 0

• To minimize MSE,

𝝎 = 𝑋train
𝑇
𝑋train

−1
𝑋train𝑇𝒚train

Generalization, Overfitting and Underfitting

⚫ Generalization: The ability in performing on new test data

⚫ i.i.d (independent and identically distributed) assumption:

• Each data is independent

• Training/test data are drawn from the same distribution

⚫ Overfitting

• Training error is quite small but test error is huge (E.g.,

model is to general)

⚫ Underfitting

• Training error is not sufficiently small (E.g., model is too

simple)

Capacity

◼ Ability to fit a wide variety of functions

◼ One way to control its capacity is hypothesis space

• Set of functions acceptable (e.g., linear functions for linear regression)

◼ Representational capacity: Defined by the model

• E.g., capacity of 𝑦 = 𝜔𝑥 < capacity of 𝑦 = 𝜔2𝑥
2 + 𝜔1

◼ Effective capacity: Defined by the algorithm

• E.g., convex algorithm cannot handle nonconvex function

No Free Lunch Theorem

Averaged over all possible data-generating distributions, every classification

algorithm has the same error rate when classifying previously unobserved points.

“No machine learning algorithm is universally any better than any other”

• In reality, we observe a specific probability distributions

• Our goal is to understand what kinds of distributions are relevant to the

“real world” that an AI agent experiences, and what kinds of machine

learning algorithms perform well on data drawn from the kinds of data-

generateing distributions we care about

Regularization (L2, weight decay)

𝐽 𝝎 = MSEtrain + 𝜆𝝎𝑇𝝎

Hyperparameters, Validation Sets, Cross-validation

◼ Hyperparameter control the behavior/capacity of the learning algorithm

𝐽 𝝎 = MSEtrain + 𝜆𝝎𝑇𝝎ො𝑦 = 𝝎𝑇𝒙

◼ Validation set is the samples outside the training

• Generally, samples are drawn from the training set (e.g., 80% for

training, 20% for validation)

◼ Hard to control the hyperparameter to avoid over-under fitting

◼ K-fold Cross-validation (When training/test data is limited)

• Splitting dataset into k nonoverlapping subsets, the test error may

then be estimated by taking the average test error across k trials

• For each test, i-th subset is test, others are training

TRAINING

TRAINING

TRAINING

Estimators

⚫ Point Estimation (E.g., Maximum Likelihood Estimation)
- The single “best” prediction (e.g., single parameter or vector)

- Given i.i.d data points 𝒙𝑖 , the point estimator is:

𝜽𝑚 = 𝑔(𝒙1, … , 𝒙𝑚)

- Frequentist perspective

- 𝜽𝑚 is random and does not require to be close to true

⚫ Function Estimation
- Simply a point estimator in function space

- E.g., the parameter 𝝎 can be interpreted as both point/function

estimator

Bias

◼ The expected deviation from the true value of the function or parameter

◼ An estimator መ𝜃𝑚 is unbiased if bias መ𝜃𝑚 = 0, which implies 𝔼 መ𝜃𝑚 = 𝜃

◼ An estimator መ𝜃𝑚 is asymptotically unbiased if lim
𝑚→∞

bias መ𝜃𝑚 = 0

◼ Example Gaussian Distribution: Consider a set of samples 𝑥1, … , 𝑥𝑚

that are i.i.d according to a Gaussian distribution with mean 𝜇 as

𝑝 𝑥𝑖; 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

𝑥𝑖 − 𝜇
2

𝜎2
ො𝜇𝑚 =

1

𝑚

𝑖

𝑚

𝑥𝑖

bias ො𝜇𝑚 = 𝔼 ො𝜇𝑚 − 𝜇 =
1

𝑚
σ𝑖
𝑚𝔼[𝑥𝑖] − 𝜇 = 𝜇 − 𝜇 = 0 (unbiased)

• bias መ𝜃𝑚 = 𝔼 መ𝜃𝑚 − 𝜃

◼ Consistency: plim𝑚→∞
መ𝜃𝑚 = 𝜃

- As the number of data grows, the estimator converges to true

- The unbiased estimator does not always has consistency (e.g., Gaussian

when the number of sample in the estimator is one)

(Sample mean estimator)

Variance and Standard Error

◼ The deviation from the expected estimator value that any particular sampling of

the data is likely to cause

◼ Variance: Var(መ𝜃), Standard error: SE መ𝜃 = Var(መ𝜃)

◼ Example: Gaussian Distribution: Consider a set of samples 𝑥1, … , 𝑥𝑚

that are i.i.d according to a Gaussian distribution with mean 𝜇 as

Var Ƹ𝜇𝑚 = Var
1

𝑚

𝑖

𝑚

𝑥𝑖 =
1

𝑚2

𝑖

𝑚

Var 𝑥𝑖 =
1

𝑚
𝜎

◼ Trade-off between bias and variance (How to design better estimator)

- MSE (Mean Squared Error) = 𝔼 መ𝜃𝑚 − 𝜃
2
= bias መ𝜃𝑚

2
+ Var መ𝜃𝑚

𝑝 𝑥𝑖; 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

𝑥𝑖 − 𝜇
2

𝜎2
ො𝜇𝑚 =

1

𝑚

𝑖

𝑚

𝑥𝑖 (Sample mean estimator)

Maximum Likelihood Estimation

◼ Consider m examples 𝕏 = 𝑥1, … , 𝑥𝑚 from the true, unknown dist. 𝑝data(𝒙)

◼ Let 𝑝model(𝒙; 𝜽) maps any configuration 𝑥 to a real number estimating the true

probability 𝑝data(𝒙)

◼ The maximum likelihood estimator for 𝜃 is defined as

𝜽𝑀𝐿 = argmax
𝜃

𝑝model 𝕏;𝜽 = argmax
𝜃

Π𝑖
𝑚𝑝model (𝑥

𝑖; 𝜽)

⇔ 𝜽𝑀𝐿 = argmax
𝜃

1

𝑚
σ𝑖
𝑚 log 𝑝model(𝑥

𝑖; 𝜽)

⇔ 𝜽𝑀𝐿 = argmax
𝜃
𝔼𝑥~ ො𝑝data

log 𝑝model(𝒙; 𝜽)

◼ Equivalent to minimizing the dissimilarity between the empirical distribution

and model distribution via KL divergence or cross entropy

𝐷𝐾𝐿(Ƹ𝑝data| 𝑝model = 𝔼𝑥~ ො𝑝data
log Ƹ𝑝data(𝒙) − log 𝑝model(𝒙; 𝜽)

min
𝜃

𝐷𝐾𝐿(Ƹ𝑝data| 𝑝model = min
𝜃

−𝔼𝑥~ ො𝑝data
log 𝑝model(𝒙; 𝜽)

Example (Unfair Coin) (1)

1. One wishes to determine how biased an unfair coin is. Call the probability of

tossing a ‘head’ p. The goal then becomes to determine p. (so here p is θ).

2. Suppose the coin is tossed 80 times: i.e. the sample might be something like x1

= H, x2 = T, ..., x80 = T, and the count of the number of heads "H" is observed.

3. Suppose the outcome is 49 heads and 31 tails, and suppose the coin was taken

from a box containing three coins: one which gives heads with probability p =

1/3 or p=1/2 or p = 2/3. The coins have lost their labels, so which one it was is

unknown.

𝑃 = 1/3 𝑃 = 1/2 𝑃 = 2/3

Example (Unfair Coin) (2)

1. 𝑃 𝐻 = 49 𝑝 =
1

3
=

80
49

1

3

49
1 −

1

3

31
≈ 0.000

2. 𝑃 𝐻 = 49 𝑝 =
1

2
=

80
49

1

2

49
1 −

1

2

31
≈ 0.012

3. 𝑃 𝐻 = 49 𝑝 =
2

3
=

80
49

2

3

49
1 −

2

3

31
≈ 0.054

𝑃 = 1/3 𝑃 = 1/2 𝑃 = 2/3

The likelihood maximized when p = 2/3, and so this is the

maximum likelihood estimate for p

Conditional Log-Likelihood and Mean Squared Error

◼ MLE that is generalized to estimate a conditional probability 𝑃(𝒚|𝑋; 𝜽)

𝜽𝑀𝐿 = argmax
𝜃

𝑃(𝒚|𝑋; 𝜽) = argmax
𝜃

𝑖

𝑚

log𝑃(𝑦𝑖|𝒙𝑖; 𝜽)

◼ Example: Linear regression as Maximum Likelihood;

• 𝑝 𝑦𝑖 𝒙𝑖 = 2𝜋𝜎2 −
1

2 exp −
1

2
(
𝑦𝑖−𝝎

𝑇𝒙𝑖
2

𝜎2
)

◼ The conditional log-likelihood is given by:

𝑖

𝑚

log𝑃(𝑦𝑖|𝒙𝑖; 𝝎) = −𝑚 log𝜎 −
𝑚

2
log 2𝜋 −

𝑖

𝑚
ො𝑦𝑖 − 𝑦𝑖

2

2𝜎2

𝑦𝑖 :output of the linear regression on the i-th input

m: the number of training examples

const.

E.g., given X then predict Y

Properties of Maximum Likelihood

◼ Under the appropriate conditions, the maximum likelihood

estimator has the property of consistency (though the statistical

efficiency is different)

• The true distribution 𝑝data(𝒙) lies within the model family 𝑝model 𝒙; 𝜽

• The true distribution 𝑝data(𝒙) corresponds to exactly one value of 𝜃

◼ For consistency and efficiency, maximum likelihood is often

considered the preferred estimator to use for machine learning

Bayesian Statistics

◼ Frequent statistics

• estimates a single value 𝜽, then makes predictions

• True parameter 𝜃 is unknown but fixed

◼ Bayesian statistics

• considers full distribution over 𝜽 when making a prediction

• True parameter 𝜃 is uncertain thus is a random variable

• Instead, the prior probability distribution 𝑝(𝜃) is known

⚫ Consider that we have a set of data samples {𝑥1, … , 𝑥𝑚}, Bayes' rule

gives

𝑝 𝜽 𝑥1, … , 𝑥𝑚 =
𝑝 𝑥1, … , 𝑥𝑚|𝜽 𝑝(𝜽)

𝑝(𝑥1, … , 𝑥𝑚)

Data likelihood Prior

Posterior probability

𝑝 𝑥𝑚+1 𝑥1, … , 𝑥𝑚 = න𝑝 𝑥𝑚+1|𝜽 𝑝 𝜽 𝑥1, … , 𝑥𝑚 𝑑𝜽

⚫ After observing m examples, the predicted distribution over the next

data sample is given by

Frequent vs Bayesian in Linear Regression

ො𝑦 = 𝝎𝑇𝒙 𝑦𝑖
train, 𝒙𝑖

train 𝑖 = 1,… ,m ⇒ 𝒚, 𝑋

𝑝 𝒚 𝑋,𝝎 = 𝒩 𝒚;𝑋𝝎, 𝐼 ∝ exp −
1

2
𝒚 − 𝑋𝝎 𝑇 𝒚 − 𝑋𝝎

𝑝 𝝎 = 𝒩 𝝎;𝝁0, Λ0 ∝ exp −
1

2
𝝎− 𝝁0

𝑇Λ0
−1 𝝎− 𝝁0

𝑝 𝝎|𝑋, 𝒚 ∝ 𝑝 𝒚 𝑋,𝝎 𝑝 𝝎

∝ exp −
1

2
𝒚 − 𝑋𝝎 𝑇 𝒚 − 𝑋𝝎 exp −

1

2
𝝎− 𝝁0

𝑇Λ0
−1 𝝎− 𝝁0

∝ exp −
1

2
−2𝒚𝑇𝑋𝝎+𝝎𝑇𝑋𝑇𝑋𝝎+𝝎𝑇Λ0

−1𝝎 − 2𝝁0
𝑇Λ0

−1𝝎

(= diag 𝜆0)

∝ exp −
1

2
𝝎 − 𝝁𝑚

𝑇Λ𝑚
−1 𝝎− 𝝁𝑚 +

1

2
𝝁𝑚
𝑻 Λm

−1𝝁𝑚

(Λm ≜ 𝑋𝑇𝑋 + 𝛬0
−1 −1, 𝝁𝑚 ≜ Λm(𝑋

𝑇𝒚 + 𝛬0
−1𝝁0))

∝ exp −
1

2
𝝎 − 𝝁𝑚

𝑇Λ𝑚
−1 𝝎− 𝝁𝑚

𝜔𝑀𝐴𝑃 = argmax
𝝎

𝑝(𝝎|𝑋, 𝒚)

Maximum A Posteri (MAP) Estimation

(maximize Likelihood + Prior)

𝑖=1

𝑚

log𝑃(𝑦𝑖|𝒙𝒊; 𝜔)

= −𝑚 log𝜎 −
𝑚

2
log 2𝜋 −

𝑖=1

𝑚
ො𝑦𝑖 − 𝑦𝑖

2

2𝜎2

max
𝜃

𝑖=1

𝑚

log 𝑃(𝑦𝑖|𝒙𝑖; 𝜽)

⇔ min
𝝎

𝑖=1

𝑚

𝝎𝑇𝒙𝑖 − 𝑦𝑖
2

Maximum Likelihood

Weight decay

Machine Learning Algorithm
◼ Supervised: given training set of examples of inputs 𝒙 and outputs 𝒚
◼ Unsupervised: no outputs 𝒚

◼ Probabilistic Supervised Learning:

• Maximum likelihood estimation (max
𝜃

𝑝(𝑦|𝑥; 𝜃))

• For classification problem, we need further techniques to handle discrete value

• E.g., 𝑝 𝑦 = 1 𝑥; 𝜃 = 𝜎(𝜃𝑇𝑥) (logistic regression)

http://www.differencebetween.net/technology/differences-between-supervised-

learning-and-unsupervised-learning/

Workflow of Supervised Learning

https://en.proft.me/2015/12/24/types-machine-learning-algorithms/

Linear Binary Classification Problem

• Binary classification can be viewed as the task of
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

Borrowed materials from
https://www.cs.utexas.edu/~mooney/cs391L/slides/svm.ppt

• Which of the linear separators is optimal?

Linear Separators

• Distance from example 𝒙 to the separator is

• Examples closest to the hyperplane are support vectors

• Margin ρ of the separator is the distance between support vectors.

r

ρ

Classification Margin

𝑟 =
𝝎𝑇𝒙 + 𝑏

𝝎

• Maximizing the margin is good according to intuition and probably
approximately correct learning (PAC) theory

• Implies that only support vectors matter; other training examples are
ignorable

Maximum Margin Classification

Support Vector Machine (Vapnik1995)

◼Let training set 𝒙𝑖 , 𝑦𝑖 , 𝑦𝑖 ∈ {−1,1} be separated by a hyperplane with margin ρ.
Then for each training example 𝒙𝑖 , 𝑦𝑖 :

◼For every support vector 𝒙𝑠 the above inequality is an equality. After rescaling
𝝎 and 𝒃 by 𝜌/2 in the equality, we obtain that distance between each xs and the
hyperplane is

◼Then the margin can be expressed through (rescaled) w and b as:

𝝎𝑇𝒙𝑖 + 𝑏 ≤ −

𝜌

2
𝑖𝑓 𝑦𝑖 = −1

𝝎𝑇𝒙𝑖 + 𝑏 ≥
𝜌

2
𝑖𝑓 𝑦𝑖 = 1

𝑦𝑖 𝝎
𝑇𝒙𝑖 + 𝑏 ≥

𝜌

2

𝑟 =
𝑦𝑠(𝝎

𝑇𝒙𝒔 + 𝑏)

𝝎
=

1

𝝎

𝜌 = 2𝑟 =
2

𝝎

◼We can formulate the quadratic optimization problem:

◼Which can be reformulated as:

Find 𝝎 and b such that the margin 𝜌 is maximized

s.t., for all 𝒙𝑖 , 𝑦𝑖 : 𝑦i 𝝎
𝑇𝒙𝑖 + 𝑏 ≥ 1

Find 𝝎 and b such that 𝝓 𝝎 =
𝟏

𝟐
𝝎 𝟐 is minimized

s.t., for all 𝒙𝑖 , 𝑦𝑖 : 𝑦i 𝝎
𝑇𝒙𝑖 + 𝑏 ≥ 1

Linear Support Vector Machine (cont.)

Need to optimize a quadratic function subject to linear constraints.

• Quadratic optimization problems are a well-known class of mathematical
programming problems for which several (non-trivial) algorithms exist.

• The solution involves constructing a dual problem where a Lagrange multiplier αi is
associated with every inequality constraint in the primal (original) problem

Solution to Linear SVM

◼ We can convert the constrained minimization to an unconstrained problem

by KKT multiplier as

min
𝜔,𝑏

1

2
𝝎 𝟐 + σ𝑖=1

𝑛 max
𝛼𝑖≥0

𝛼𝑖(1 − 𝑦𝑖 𝝎
𝑇𝒙𝑖 + 𝑏)

min
𝜔,𝑏

max
𝛼𝑖≥0

1

2
𝝎 𝟐 +

𝑖=1

𝑛

𝛼𝑖(1 − 𝑦𝑖 𝝎
𝑇𝒙𝑖 + 𝑏)

max
𝛼𝑖≥0

min
𝜔,𝑏

1

2
𝝎 𝟐 +

𝑖=1

𝑛

𝛼𝑖(1 − 𝑦𝑖 𝝎
𝑇𝒙𝑖 + 𝑏)

𝐽(𝝎, 𝑏; 𝜶)

◼ We first minimize J w.r.t {𝝎, b} for any fixed setting of 𝛼

Solution to Linear SVM

𝜕

𝜕𝝎
𝐽 𝝎, 𝑏; 𝜶 = 𝝎−

𝑖=1

𝑛

𝛼𝑖𝑦𝑖𝒙𝑖 = 0

𝜕

𝜕𝑏
𝐽 𝝎, 𝑏; 𝜶 = −

𝑖=1

𝑛

𝛼𝑖𝑦𝑖 = 0

max
𝛼𝑖≥0

min
𝜔,𝑏

1

2
𝝎 𝟐 +

𝑖=1

𝑛

𝛼𝑖(1 − 𝑦𝑖 𝝎
𝑇𝒙𝑖 + 𝑏)

⇒ max
𝛼𝑖≥0

σ𝑖 𝛼𝑖𝑦𝑖=0

σ𝑖=1
𝑛 𝛼𝑖 −

1

2
σ𝑖,𝑗=1
𝑛 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 𝒙𝑖

𝑇𝒙𝑗 (Dual form)

Quadratic programming problem

⚫ Prediction on a new example is the sign of:

𝑏 + 𝑤𝑇𝑥 = 𝑏 + 𝒙𝑇

𝑖=1

𝑛

𝛼𝑖𝑦𝑖𝒙𝑖 = 𝑏 +

𝑖∈𝑆𝑉

𝛼𝑖𝑦𝑖(𝒙
𝑇𝒙𝑖)

Why solving the Dual Problem?

◼ KKT theorem: the solution we find here will be the same as the

solution to the original problem

◼ Q: But why are we doing this? (why not just solve the original

problem?)

◼ Ans: Because this will let us solve the problem by computing

just the inner products of 𝒙𝑖
𝑇𝒙𝑗 (which will be very important

later on when we want to solve non-linearly separable

classification problems)

Nonlinear SVM

• General idea: the original feature space can always be mapped to some
higher-dimensional feature space where the training set is separable:

Φ: x→ φ(x)

Kernel Trick

𝑘 𝒙𝑖 , 𝒙𝑗 = 𝜙 𝒙𝑖
𝑇𝜙(𝒙𝑗)

max
𝛼𝑖≥0

σ𝑖 𝛼𝑖𝑦𝑖=0

σ𝑖=1
𝑛 𝛼𝑖 −

1

2
σ𝑖,𝑗=1
𝑛 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 𝒙𝑖

𝑇𝒙𝑗 (Dual form)

max
𝛼𝑖≥0

σ𝑖 𝛼𝑖𝑦𝑖=0

σ𝑖=1
𝑛 𝛼𝑖 −

1

2
σ𝑖,𝑗=1
𝑛 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑘(𝒙𝑖 , 𝒙𝒋) (Dual form)

• If there is a ”kernel function” 𝑘 such that 𝑘 𝒙𝑖 , 𝒙𝑗 = 𝜙 𝒙𝑖
𝑇𝜙(𝒙𝑗) then we do not

need to know or compute 𝜙. That is, the kernel function defines inner products in

the transformed space.

Example: let 𝑘 𝒙𝑖 , 𝒙𝑗 = 1 + 𝒙𝑖
𝑇𝒙𝑗

2

𝑘 𝒙𝑖 , 𝒙𝑗 = 1 + 𝒙𝑖
𝑇𝒙𝑗

2
= 1 𝑥𝑖1

2 2𝑥𝑖1𝑥𝑖2 𝑥𝑖2
2 2𝑥𝑖1 2𝑥𝑖2

𝑇
1 𝑥𝑗1

2 2𝑥𝑗1𝑥𝑗2 𝑥𝑗2
2 2𝑥𝑗1 2𝑥𝑗2

𝒙 ∈ ℝ𝟐

Thus, a kernel function implicitly maps data to a high-dimensional space

(without the need to compute each φ(x) explicitly).

𝑘 𝒙𝑖 , 𝒙𝑗 = 𝜙 𝒙𝑖
𝑇𝜙 𝒙𝑗 𝑤ℎ𝑒𝑟𝑒 𝜙 𝒙 = 1 𝑥1

2 2𝑥1𝑥2 𝑥2
2 2𝑥1 2𝑥2

Popular Kernel Function

𝑘 𝒙𝑖 , 𝒙𝑗 = 𝑥𝑖
𝑇𝑥𝑗 + 1

p

𝑘 𝒙𝑖 , 𝒙𝑗 = exp
𝑥𝑖 − 𝑥𝑗
2𝜎2

𝑘 𝒙𝑖 , 𝒙𝑗 = tanh(𝑘𝑥𝑖
𝑇𝑥𝑗 − 𝛿)

Polynomial function

Radial basis function

Sigmoid function

Other Supervised Learning Algorithms

◼ k-Nearest Neighbor (NN) Regression

- We find the k-nearest neighbors to x in the training

data X. We then return the average of the

corresponding y values in the training set

- Very high capacity (larger data, better accuracy)

- Cannot be generalized (learning nothing from data)

◼ Decision Tree (Breiman et al., 1984)

- Each “Question” divide the internal non-

overlappng regions

Unsupervised Learning Algorithms

◼ A classical supervised learning task is to find the “best”

representation on of the data

◼ “Best” is often the simpler representation

⚫ Low dimensional representation

- compresses as much information about x as possible in a

smaller representation (e.g., PCA)

⚫ Sparse representation

- embeds the dataset into a representation whose entries are

mostly zero for most inputs (e.g., sparse coding)

⚫ Independent representation

- attempts to disentangle the sources of variation

underlying the data distribution such that the dimensions

of the representation are statistically independent (e.g.,

PCA)

Unsupervised Learning as Clustering

Principle Component Analysis (1)

◼ Principle Component Analysis (PCA) is a technique to

emphasize variation and bring out strong patterns in data

◼ Criteria: lower dimension and independent

http://www.nlpca.org/pca-principal-component-analysis-matlab.html

1st

principle
component

2nd

principle
component

Maximum variance along the PC axis

Principle Component Analysis (2)

⚫Design matrix: 𝑋 ∈ 𝑅𝑚×𝑛; 𝔼[𝒙] = 0 (If not, normalize the matrix)

⚫ The unbiased sample covariance matrix

• Var 𝒙 = 1/ 𝑚 − 1 𝑋𝑇𝑋 (since 𝔼[𝒙] = 0)

◼ PCA finds a representation 𝒛 = 𝑊𝑇𝒙, where Var 𝒛 is diagonal

◼ Principle component of X is given by the SVD (X = 𝑈Σ𝑊𝑇)
• 𝑋𝑇𝑋 = 𝑈Σ𝑊𝑇 𝑇𝑈Σ𝑊𝑇 = 𝑊Σ2WT

• Var 𝒙 =
1

𝑚−1
𝑋𝑇𝑋 =

1

𝑚−1
𝑊Σ2WT

• Var 𝒛 =
1

𝑚−1
𝑊𝑇𝑋𝑇𝑋𝑊 =

1

𝑚−1
Σ2 (diagonal matrix)

◼ When we project the data x to z via the linear transformation W,

the resulting representation has a diagonal covariance matrix,

which immediately implies that the individual elements of z are

mutually uncorrelated (independent representation)

K-means Clustering (1)

◼ Divide the feature space into K clusters

• For image clustering, the feature vector can be average

color, RGB histogram, Bag-of-Visual-Words and so on

◼ An iterative clustering algorithm

• Initialize: Pick K random cluster centers (mean vector)

• Alternate:

1. Assign data points to closest cluster center

2. Change the cluster center to the average of its

assigned points

• Stop when no points’ assignment change

K-means Clustering (2)

Borrowed from http://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture14.pdf

Other Unsupervised Clustering Algorithms

⚫ K-medoids (Assign cluster centers from samples in data)

⚫ Mean-shift (Adaptively choose the number of clusters)

⚫ Spectral Clustering (Clustering on the graph)

⚫ Gaussian Mixture Model (GMM)

⚫ Affinity propagation (Give hierarchical structure)

⚫ And so on…

Stochastic Gradient Descent

◼ Instead, we can sample minibatch of examples 𝔹 = {𝑥1, … , 𝑥𝑚
′
}

• 𝐽 𝜽 = 𝔼𝒙,𝑦~ 𝑝data
𝐿 𝒙, 𝑦, 𝜽 =

1

𝑚
σ𝑖
𝑚 𝐿(𝒙𝑖 , 𝑦𝑖 , 𝜽)

• ∇𝜃𝐽 𝜽 =
1

𝑚
σ𝑖
𝑚∇𝜃𝐿(𝒙

𝑖 , 𝑦𝑖 , 𝜽)

◼ If we compute derivatives for all samples, it costs O(m)

• ∇𝜃𝐽 𝜽 =
1

𝑚′
σ𝑖
𝑚′
∇𝜃𝐿(𝒙

𝑖 , 𝑦𝑖 , 𝜽)

◼ Pros.

• Good for the large scale training

• If m goes infinity, the function converges to minimum

◼ Cons. (We will learn the “better” algorithm later)

• Difficult to set “best” learning rate

• The preprocessing is necessary (e.g., normalization of data)

The Curse of Dimensionality

The curse of dimensionality refers to various phenomena that arise when analyzing and organizing

data in high-dimensional spaces. The expression was coined by Richard E. Bellman when

considering problems in dynamic optimization. The common theme of these problems is that when

the dimensionality increases, the volume of the space increases so fast that the available data

become sparse. This sparsity is problematic for any method that requires statistical significance. In

order to obtain a statistically sound and reliable result, the amount of data needed to support the

result often grows exponentially with the dimensionality.

https://en.wikipedia.org/wiki/Curse_of_dimensionality

Local Constancy and Smoothness Regularization

◼ Smoothness prior or local constancy prior states that the function

we learn should not change much within a small region 𝑓 𝒙 ≈
𝑓(𝒙 + 𝜖) (e.g., k-nearest neighbors classifier)

◼ Smoothness prior itself is not sufficient to represent a complex

function that has many more regions to be distinguished than the

number of training examples (e.g., to extend the repetitive pattern

in the space such as a checker board).

◼ Data-specific or task specific assumption (knowledge) may help

to do better learning (e.g., the data could be decomposed into

factors)

Manifold Learning (1)

◼ In machine learning, manifold is a connected set of points that

can be approximated well by considering only a small number of

degrees of freedom, or dimensions, embedded in a higher-

dimensional space.

Manifold Learning (2)

◼ Manifold learning algorithms assume that the data is lying on a

low-dimensional manifold and represent the data in terms of the

coordinate of the manifold.

◼ Given a training example of human faces, e.g., variational

autoencoder learns the 2-D coordinate of systems (Chapter20)

