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Fundamentals of Media Processing, Deep Learning

An introduction to a broad 

range of topics in deep 

learning, covering 

mathematical and conceptual 

background, deep learning 

techniques used in industry, 

and research perspectives.

Chapter 1-9 (out of 20)

• Due to my background, I will 
mainly talk about “image”

• I will introduce some 
applications beyond this book
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Linear Algebra
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Scalars, Vectors, Matrices and Tensors

Scalars

(1-D) Vector

𝑎 = 1

𝒂 =
0
1

= 0,1 𝑇

(2-D) Matrix 𝐴 =
0 1
2 3

𝐴 ∈ ℝ2×2𝐴𝑇 =
0 2
1 3

𝐴1,1 = 0, 𝐴1,2 = 1, 𝐴2,1 = 2, 𝐴2,2 = 3

(N-D) Tensor
𝐴𝑖,𝑗,𝑘…
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Multiplying Matrices and Vectors

𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

𝒙𝑇𝒚 = 𝒚𝑇𝒙

𝒙 ∗ 𝒙 = 𝒙𝑇𝒙 = 𝒙 𝟐

𝐴𝐴−1 = 𝐼 Inverse matrix

L1 Norm 𝒙 𝟏 =

𝒊

|𝑥𝑖|

L2 Norm 𝒙 𝟐 = 

𝒊

|𝑥𝑖|
𝟐

𝟏
𝟐

L∞ Norm 𝒙 ∞ = max
𝒊
|𝑥𝑖|

𝐴 𝐹 = 

𝑖,𝑗

𝐴𝑖,𝑗
2Frobenius Norm

𝐴𝑇 = 𝐴 Symmetric matrix

𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝐼 Orthogonal matrix Trace operatorTr 𝐴 =

𝑖

𝐴𝑖,𝑖

𝐴 𝐹 = Tr 𝐴𝐴𝑇L0 Norm 𝒙 𝟎 = # of nonzero entries

𝒙 2 = 1 Unit vector 𝒙𝑇𝒚 = 0 Orthogonal
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Matrix Decomposition

◼ Decomposition of matrices shows us information about their

functional properties that is not obvious from the representation

of the matrix

⚫Eigendecomposition

⚫ Singular value decomposition

⚫ LU decomposition

⚫QR decomposition

⚫ Jordan decomposition

⚫Cholesky decomposition

⚫ Schur decomposition

⚫Rank factorization

⚫And more…

◼ Applicable matrix

◼ Decomposition type

◼ Application

Differs in
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Eigendecomposition

𝐴𝒗 = 𝜆𝒗

𝐴 = 𝑉diag 𝜆 𝑉−1

𝒗: Eigenvector

𝜆: Eigenvalue

⚫ Eigenvector and eigenvalue:

⚫ Eigendecomposition of a diagonalizable matrix :

⚫ Every symmetric matrix has a real, orthogonal 

eigendecomposition

𝐴 = 𝑄𝛬𝑄𝑇

⚫ A matrix whose eigenvalues are all positive is positive definite, 

positive or zero is positive semidefinite

𝑉: A set of eigenvectors

𝜆: A set of eigenvalues
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What Eigenvalues and Eigenvectors are?

◼ Eigenvalues and eigenvectors feature prominently in the

analysis of linear transformations. The prefix eigen- is

adopted from the German word eigen for "proper",

"characteristic". Originally utilized to study principal axes of

the rotational motion of rigid bodies, eigenvalues and

eigenvectors have a wide range of applications, for example

in stability analysis, vibration analysis, atomic orbitals, facial

recognition, and matrix diagonalization.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

In this shear mapping the red arrow 

changes direction but the blue arrow 

does not. The blue arrow is an 

eigenvector of this shear mapping 

because it does not change direction, 

and since its length is unchanged, 

its eigenvalue is 1.
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Calculation of Eigendecomposition

𝐴 − 𝜆𝐼 𝒗 = 0𝐴𝒗 = 𝜆𝒗 →

⚫ 𝐴 − 𝜆𝐼 must not have inverse matrix, otherwise 𝑣 = 0

det 𝐴 − 𝜆𝐼 = 0 → 𝑝 𝜆 = 𝜆 − 𝜆1
𝑛1 𝜆 − 𝜆2

2 𝜆 − 𝜆3
𝑛3 …

⚫ Simply solve a linear equation

⚫ Once 𝜆𝑠 are calculated, eigenvectors are calculated by:

𝐴 − 𝜆𝐼 𝒗 = 0
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Singular Value Decomposition (SVD)

⚫ Similar to eigendecomposition, but matrix need not be square. 

Singular value decomposition of a real matrix A is 

𝐴 = 𝑈𝐷𝑉𝑇

⚫ The left singular vectors of 𝐵 are the eigenvectors of  𝐴𝐴𝑇

⚫ The right singular vectors of 𝐵 are the eigenvectors of 𝐴𝑇𝐴

⚫ SVD is useful for the matrix inversion of non-square matrix 

(pseudo inverse matrix) or rank approximation (E.g., find 

nearest matrix whose rank is k) or solving a homogenous 

system

𝐴𝒖 = 𝜎𝒖 𝐴𝑇𝒗 = 𝜎𝒗
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Solving Linear Systems

𝑎 + 2b + 3c = 3

2𝑎 − b + c = 2

5a + b − 2c = 1

1 2 3
2 −1 1
5 1 −2

𝑎
𝑏
𝑐

=
3
2
1

𝐴 𝒙 𝒚

𝒙 = 𝐴−1𝒚

𝑎 + 2b + 3c = 3

2𝑎 − b + c = 2

1 2 3
2 −1 1

𝑎
𝑏
𝑐

=
3
2

?

𝑎 + 2b + 3c = 3

2𝑎 − b + c = 2

5a + b − 2c = 1

1 2 3
2 −1 1
5 1 −2
8 −1 6

𝑎
𝑏
𝑐

=

3
2
1
0

8a − b + 6c = 0

?

◼ Number of Eq = Number of Unknown (Determined)

◼ Number of Eq < Number of Unknown (Underdetermined)

◼ Number of Eq > Number of Unknown (Overdetermined)
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Moore-Penrose Pseudoinverse

𝒙 = 𝐴+𝒚

◼ If the linear system is:

⚫ Determined: this is same as the inverse

⚫ Underdetermined: this gives us the solution with the 

smallest norm of x

⚫ Overdetermined: this gives us the solution with the 

smallest error

𝐴+ = 𝑉𝐷+𝑈𝑇 (𝐴 = 𝑈𝐷𝑉𝑇 , 𝐷𝑖𝑖
+ =

1

𝐷𝑖𝑖
)

◼ SVD gives the pseudoinverse of A as

◼ The solution to any linear systems is given by
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The Homogeneous System

𝐴𝑥 = 0 𝐴𝑇𝐴𝑥 = 0 𝐴𝑇𝐴𝑣 = 𝜆𝑣

⚫ Eigenvector corresponding to smallest eigen value (~=0)

◼ If det(𝐴𝑇𝐴) = 0, numerical solutions to a homogeneous 

system can be found with SVD or eigendecompositoin

⚫ Or, the column vector in V which is corresponding to the 

smallest singular value (𝐴 = 𝑈𝐷𝑉𝑇)

◼ We may want to solve the homogenous system that is defined as

𝐴𝒙 = 0
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Example: Structure-from-Motion

https://www.youtube.com/watch?v=i7ierVkXYa8
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Example: Structure-from-Motion

• Relative camera poses could be computed from the point correspondences on images

• Given camera pose (R,t), and camera intrinsics (K), 3D points X is given by  triangulation

𝑥1 = 𝐾1 𝑅1 𝑇1 ෨𝑋

𝑥2 = 𝐾2 𝑅2 𝑇2 ෨𝑋

𝐴𝑋 = 0

Homogenous system
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Probability and Information Theory
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Why probability?

Most real problem is not deterministic.

Which is this 

picture about

Dog or Cat?
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Three possible sources of uncertainty

⚫ Inherent stochasticity in the system

e.g., Randomly shuffled card

⚫ Incomplete observability

e.g., Monty Hall problem

⚫ Incomplete modeling

e.g., A robot that only sees the discretized space

⚫ A random variable is a variable that can take on different 

values randomly. e. g., 𝑥 ∈ x
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Monty Hall problem
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Discrete case: Probability Mass Function

⚫ The domain of P must be the set of all possible states of x

• σ𝑥∈x𝑃 𝑥 = 1. We refer to this property as being normalized. Without this 

property, we could obtain probabilities greater than one by computing the 

probability of one of many events occurring

• ∀𝑥 ∈ x, 0 ≤ 𝑃 𝑥 ≤ 1.An impossible event has probability 0 and no state can be 

less probable than that. Likewise, an event that is guaranteed to happen has 

probability 1, and no state can have a greater chance of occurring

𝑃 𝑥

⚫ Example

• Dice : P(x)=1/6, x is an event where f(x)=1,2,3,4,5,6   
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Continuous case: Probability Density Function

⚫ The domain of 𝑝 must be the set of all possible states of x

• ∀𝑥 ∈ x, 𝑝 𝑥 ≥ 0. Note that we do not require 𝑝 𝑥 ≤ 1

• ∫ 𝑝 𝑥 𝑑𝑥 = 1

• Does not give the probability of a specific state directly

e.g., p(0.0001)  + p(0.0002) +….. >= 100%!

𝑝 𝑥

⚫ Example

• What is the probability that randomly selected value within 

[0,1] is more than 0.5?
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Marginal Probability

◼ The probability distribution over the subset

⚫ ∀𝑥 ∈ x, P 𝑥 = σ𝑦𝑃 𝑥, 𝑦 (Discrete)

⚫ 𝑝 𝑥 = ∫ 𝑝 𝑥, 𝑦 𝑑𝑦 (Continuous)

0.4

0.1

0.3

0.2

Tokyo

Outside Tokyo

FemaleMale

Q. How often students come from Tokyo?

Table: The statistics about the student
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Conditional Probability

⚫ 𝑃 𝑦 𝑥 = 𝑃 𝑦, 𝑥 /𝑃(𝑥)

◼ The probability of an event, given that some other event has 

happened

⚫ 𝑃 𝑦, 𝑥 = 𝑃 𝑦 𝑥 𝑃(𝑥)

◼ Example: The boy and girl problem

Mr. Jones has two children. One is a girl. What is the probability 

that the other is a boy?

• Each child is either male or female.

• Each child has the same chance of being male as of being female.

• The sex of each child is independent of the sex of the other.
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Conditional Probability

⚫ 𝑃 𝑦 : The probability that “The other is a boy” 

⚫ 𝑃 𝑥 : The probability that “One is a girl” 

⚫ 𝑃 𝑦|𝑥 : The probability that “The other is a boy” when “One is a girl” 

𝑃 𝑦 𝑥 =
𝑃 𝑦, 𝑥

𝑃 𝑥
=
2/4

3/4
=
2

3

⚫ 𝑃 𝑦, 𝑥 : The probability that “One is a girl, the other is a boy”

[Boy/Boy, Boy/Girl, Girl/Boy, Girl/Girl]
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Chain rule of Probability

⚫ 𝑃 𝑥 1 , … , 𝑥(𝑛) = 𝑃 𝑥 1 Π𝑖=2
𝑛 𝑃(𝑥 𝑖 |𝑥 1 , … , 𝑥(𝑖−1))

⚫ 𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑎 𝑏, 𝑐 𝑃(𝑏, 𝑐)

⚫ 𝑃 𝑏, 𝑐 = 𝑃(𝑏|𝑐)𝑃(𝑐)

⚫ 𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑎 𝑏, 𝑐 𝑃 𝑏 𝑐 𝑃(𝑐)
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Independence and Conditional Independence

⚫ ∀𝑥 ∈ x, 𝑦 ∈ y, 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝(𝑦)

⚫ ∀𝑥 ∈ x, 𝑦 ∈ y, 𝑧 ∈ z, 𝑝 𝑥, 𝑦|𝑧 = 𝑝 𝑥|𝑧 𝑝(𝑦|𝑧)

◼ The random variables x and y are independent if their probability 

distribution can be expressed as a product of two independent 

factors

◼ Two random variables x and y are conditionally independent 

given random variable z if the conditional probability distribution 

over x and y factorizes in this way for every value of z

𝑃 𝑅𝑒𝑑 ∩ 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 𝑃 𝑅 𝑌 𝑃(𝐵|𝑌)
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Expectation, Variance and Covariance

• Ε𝑥→𝑃 𝑓(𝑥) = σ𝑥𝑃 𝑥 𝑓(𝑥)

• Ε𝑥→𝑝 𝑓(𝑥) = ∫𝑝 𝑥 𝑓 𝑥 𝑑𝑥

◼ The expectation of some function f(x) with respect to P(x) or p(x) is 

mean value that f takes on when x is drawn from P or p

◼ The variance gives how much the values of a function of a random variable x

vary as we sample different values of x from its probability distribution

• Var 𝑓(𝑥) = Ε 𝑓 𝑥 − Ε 𝑓 𝑥 2

◼ The covariance gives some sense of how much two values are linearly related 

to each other, as well as the scale of these variables:

• Cov 𝑓 𝑥 , 𝑔(𝑦) = Ε 𝑓 𝑥 − Ε 𝑓 𝑥 𝑔 𝑦 − Ε 𝑔 𝑦

• Cov 𝒙 𝑖,𝑗 = Cov 𝑥𝑖 , 𝑥𝑗 Covariance matrix for 𝑛 × 𝑛 matrix
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Common Probability Distribution (1)

◼ Bernoulli distribution

◼ Gaussian (Normal) distribution

𝑃 1 = Φ 𝑃 0 = 1 − Φ 𝑃 𝑥 = 𝜙𝑥 1 − Φ 1−𝑥

𝒩 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

1

2𝜎2
𝑥 − 𝜇 2

The central limit theorem:

The sum of many independent 

random variables is approximately 

normally distributed
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Common Probability Distribution (2)

◼ Multivariate normal distribution

𝑁 𝒙; 𝝁, Σ =
1

2𝜋 𝑛det(Σ)
exp −

1

2
𝒙 − 𝝁 𝑇Σ−1(𝒙 − 𝝁)

https://notesonml.wordpress.com/2015/06/30/chapter-14-anomaly-detection-part-2-

multivariate-gaussian-distribution/
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Common Probability Distribution (3)

𝑝 𝑥; 𝜆 = 𝜆𝟏𝑥≥0exp(−𝜆𝑥)

𝟏𝑥≥0 assign zero to negative values of x

Laplace 𝑥; 𝜇, 𝛾 =
1

2𝜆
exp(−

𝑥 − 𝜇

𝛾
)

◼ Exponential distribution

◼ Laplace distribution
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Mixtures of Distributions

𝑝 𝑥 =

𝑖

𝜙𝑖𝑁 𝑥|𝜇𝑖 , 𝜎𝑖
2

◼ Gaussian Mixture Model

◼ Empirical Distribution

𝑝 𝑥 =
1

𝑚
𝛿 𝑥 − 𝑥(𝑖)

𝜙𝑖: latent variable (weight of 

gaussian)  

⚫ GMM is a universal approximator of 

densities of a distribution

⚫ 𝛿 is a dirac delta function
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Application of GMM in Computer Vision

Background subtraction by GMM

https://www.youtube.com/watch?v=KGal_NvwI7A
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Useful Properties of Common Functions

◼ Logistic Sigmoid

◼ Softplus function

𝜎 𝑥 =
1

1 + exp(−𝑥)

𝜍 𝑥 = log 1 + exp(−𝑥)

⚫ Good to produce [0,1] 

random values

⚫ Good to prodce [0,∞] 

random values
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Bayes’ Rule

𝑃 𝑥 𝑦 =
𝑃 𝑥 𝑃(𝑦|𝑥)

𝑃(𝑦)
=
𝑃 𝑥, 𝑦

𝑃(𝑦)

The entire output of a factory is produced on three machines. The three machines 

account for 20%, 30%, and 50% of the factory output. The fraction of defective 

items produced is 5% for the first machine; 3% for the second machine; and 1% for 

the third machine. If an item is chosen at random from the total output and is found 

to be defective, what is the probability that it was produced by the third machine?

Factory Problem

Posterior probability
Prior probability

likelihoodPrior probability
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The entire output of a factory is produced on three machines. The three machines 

account for 20%, 30%, and 50% of the factory output. The fraction of defective 

items produced is 5% for the first machine; 3% for the second machine; and 1% for 

the third machine. If an item is chosen at random from the total output and is found 

to be defective, what is the probability that it was produced by the third machine?

𝑃 𝑋𝐴 = 0.2, 𝑃 𝑋𝐵 = 0.3, 𝑃 𝑋𝐶 = 0.5

𝑃 𝑌|𝑋𝐴 = 0.05, 𝑃 𝑌|𝑋𝐵 = 0.03, 𝑃 𝑌|𝑋𝐶 = 0.01

𝑃 Y = 𝑃 𝑌 𝑋𝐴 𝑃 𝑋𝐴 + 𝑃 𝑌 𝑋𝐵 𝑃(𝑋𝐵)+ 𝑃 𝑌 𝑋𝐶 𝑃(𝑋𝐶)

𝑃 𝑋𝐶|Y =
𝑃 𝑋𝐶 𝑃 𝑌 𝑋𝐶

𝑃 𝑌
= 5/24

Factory Problem



Fundamentals of 
Media Processing

Lecturer:

池畑 諭（Prof. IKEHATA Satoshi）
児玉 和也（Prof. KODAMA

Kazuya）

Support:

佐藤 真一（Prof. SATO Shinichi）
孟 洋（Prof. MO Hiroshi）



Fundamentals of Media Processing, Deep Learning

10/16 (Today) Introduction

10/23 Basic mathematics (1) (Linear algebra, probability, numerical computation)

10/30 Basic mathematics (2) (Linear algebra, probability, numerical computation)

11/6 Machine Learning Basics (1)

11/20 Deep Feedforward Networks

11/27 Regularization and Deep Learning

12/4 Optimization for Training Deep Models

12/11 Convolutional Neural Networks and Its Application (1)

12/18 Convolutional Neural Networks and Its Application (2)

11/13 Machine Learning Basics (2)

Basic of Machine Learning (Maybe for beginners)

Basic of Deep Learning

CNN and its Application

Chap. 2,3,4

Chap. 2,3,4

Chap. 1

Chap. 5

Chap. 5

Chap. 6

Chap. 7

Chap. 8

Chap. 9 and more

Chap. 9 and more



Fundamentals of Media Processing, Deep Learning

Last Week

◼ Linear Algebra
⚫ Matrix Decomposition (eigendecomposition, SVD)

⚫ Solving linear systems

◼ Probability
⚫ Random variable 𝑥, probability mass function 𝑃(𝑥), probability 

density function 𝑝(𝑥)
⚫ Marginal probability, conditional probability

⚫ Expectation, variance, covariance

⚫ Common probabilistic distribution (e.g., Normal distribution, Laplace 

distribution)

⚫ Mixture of Gaussian

⚫ Bays’ rule
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Information theory studies the quantification, storage, and communication of information. It was originally

proposed by Claude E. Shannon in 1948 to find fundamental limits on signal processing and communication
operations such as data compression, in a landmark paper entitled “A Mathematical Theory of

Communication”.

A key measure in information theory is entropy. Entropy quantifies the amount of uncertainty involved in the

value of a random variable or the outcome of a random process. Some other important measures in information

theory are mutual information, channel capacity, error exponents, and relative entropy.

The field is at the intersection of mathematics, statistics, computer science, physics, neurobiology, information

engineering, and electrical engineering. The theory has also found applications in other areas,

including statistical inference, natural language processing, cryptography, neurobiology, human vision, the

evolution and function of molecular codes (bioinformatics), model selection in statistics, thermal

physics, quantum computing, linguistics, plagiarism detection, pattern recognition, and anomaly detection.

Information Theory

https://en.wikipedia.org/wiki/Information_theory
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Information Theory

◼ Self-information (for single outcome)

𝐼 𝑥 = − log 𝑃(𝑥)

In units of nats or bits: amount of 

information gained by observing an 

event of probability 1/e or 1/2

◼ Shanon entropy (amount of uncertainty in an entire probability 

distribution)

𝐻 𝑥 = 𝐸𝑥~𝑃 𝐼 𝑥 = −𝐸𝑥~𝑃[log 𝑃(𝑥)]

⚫ Likely event has low information, less likely event has 

higher information

⚫Known as differential entropy for p(x)

For example, identifying the outcome of a fair coin flip (with two equally likely 

outcomes) provides less information (lower entropy) than specifying the outcome 
from a roll of a die (with six equally likely outcomes). 
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Example

𝐻 𝑥 = 𝐸𝑥~𝑃 𝐼 𝑥 = −

𝑖=1

𝑚

𝑝𝑖 log 𝑝𝑖

0 (Dirac delta), 174 (Gaussian), and 431 (uniform).

https://medium.com/swlh/shannon-entropy-in-the-context-of-machine-learning-and-ai-24aee2709e32
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Kullback-Leibler (KL) divergence

𝐷𝐾𝐿(𝑃| 𝑄 = 𝐸𝑥~𝑃 log
𝑃 𝑥

𝑄 𝑥
= 𝐸𝑥~𝑃 log 𝑃 𝑥 − log𝑄(𝑥)

◼ The difference of two distributions (higher is different)

• KL divergence is positive or zero only when P and Q are the 

same distribution

• Often used for model fitting (e.g., fitting GMM (Q(x)) on P(x)

• Asymmetric measure (𝐷𝐾𝐿(𝑃| 𝑄 ≠ 𝐷𝐾𝐿(𝑄||𝑃))

Suppose we have a distribution 

𝑝(𝑥) and want to approximate it 

with 𝑞(𝑥):

𝐷𝐾𝐿(𝑃| 𝑄 ; p: high, q: high

𝐷𝐾𝐿(𝑄| 𝑃 ; p:low, q:low

minන𝑝(log 𝑝 𝑥 − log 𝑞(𝑥)) minන𝑞(log 𝑝 𝑥 − log 𝑞(𝑥))
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Cross-entropy

• 𝐻 𝑃, 𝑄 = 𝐻 𝑃 + 𝐷𝐾𝐿(𝑃| 𝑄 = −𝐸𝑥~𝑃 log 𝑄(𝑥)

⚫ The average number of bits needed to identify an event drawn 

from the set, if a coding scheme is used that is optimized for an 

“artificial” probability distribution Q, not true distribution P

⚫ Minimizing the cross-entropy with respect to Q is equivalent to 

minimizing the KL divergence

⚫ In classification problems, the commonly used cross entropy 

loss, measures the cross entropy between the empirical 

distribution of the labels (given the inputs) and the distribution 

predicted by the classifier 
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Example
Strategy 1

Strategy 2

expected number of questions to 

guess the coin is 2.

expected number of questions to 

guess the coin is 1.75<2.

25% 25% 25% 25%

50% 25% 12.5%12.5%

Correct probability distribution (P(x))

Incorrect probability distribution (Q(x))

−𝐸𝑥~𝑃 log𝑄 𝑥 = −𝑃 log𝑄 =

Thus, cross entropy for a given strategy is simply the expected 

number of questions to guess the color under that strategy. For 

a given setup, the better the strategy is, the lower the cross 

entropy is. The lowest cross entropy is that of the optimal 

strategy, which is just the entropy defined above. 
https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy
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Structured Probabilistic Models

◼ Suppose 𝑎 influence 𝑏, and 𝑏 influence 𝑐, but 𝑎 and 𝑐
are independent; 𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑎 𝑝 𝑏 𝑎 𝑝(𝑐|𝑏)

◼ In machine learning, it is inefficient to represent an entire 

probabilistic distribution in a single function. To reduce the 

parameter, the function is often factorized 

• Directed model • Undirected model (factor graph)

◼ We can describe these factorizations using graphs (graphical 

model)

𝑝 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 = 𝑝 𝑎 𝑝 𝑏 𝑎 𝑝 𝑐 𝑎, 𝑏 𝑝 𝑑 𝑏 𝑝(𝑒|𝑐) 𝑝 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 =
1

𝑍
𝜙 1 a, b, c 𝜙 2 𝑏, 𝑑 𝜙 3 (𝑐, 𝑒)

𝒢: graph

𝒞𝑖: clique

𝜙 𝑖 (𝒞𝑖): factor
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Markov Random Field (MRF)

◼ In computer vision algorithm, the most common graphical 

model may be Markov Random Filed (MRF),  whose log-

likelihood can be described using local neighborhood 

interaction (or penalty) terms. 

◼ MRF models can be defined over discrete variables, such as 

image labels (e.g., image restoration)

𝐸(𝒙, 𝒚) = 𝐸𝑑(𝒙, 𝒚) + 𝐸𝑝(𝒙)

𝐸𝑝 𝒙 = 

𝑖,𝑗 , 𝑘,𝑙 ∈𝒩

𝑉𝑖,𝑗,𝑘,𝑙(𝑓 𝑖, 𝑗 , 𝑗(𝑘, 𝑙))

𝒩4 and 𝒩8 neighborhood system

Likelihood term penalty term (pairwise smoothness)
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INPUT

LABEL

Epipolar Line
𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 𝑙𝑎𝑏𝑒𝑙

STEREO as PIXEL-LABELING PROBLEM

LEFT RIGHT

Assign a disparity label to each pixel

STEREO MATCHING
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𝐶𝑖,𝑙 = 𝐼𝑖+𝑙 − 𝐼𝑖

Assign labels with lowest stereo matching cost 

- Left and right color difference in RGB space

𝑙

𝐶𝑖,𝑙

Left image Right image Cost map

Cost map

- Other matching cost: SSD, SAD, NCC,…

Epipolar Line

A series of “block matching”

CLASSIC: WINNER-TAKES-ALL
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◼ Markov Random Field (MRF)

min
𝑙


𝑖

𝐶𝑖,𝑙 +

𝑖



𝑗∈𝑁(𝑖)

𝑆𝑙𝑖,𝑙𝑗

Unary Pairwise

Pairwise term for “smoothness prior”

𝐶𝑖,𝑙 = 𝐼𝑖+𝑙 − 𝐼𝑖 S𝑙𝑖,𝑙𝑗 = 𝑤𝑖𝑗 𝑙𝑖 − 𝑙𝑗

Left-right consistency Label smoothness

- Many computer vision problems were formulated on the “graph”

- MRF: the graph structure where each node is only affected by its “neighbor”

- Belief Propagation (BP), local optimum (Freeman2000, Sun2003)

Why MRF?: Convenient optimization methods are available 

- Graph Cuts (GC), global optimum (Kolmogorov and Zabih2001)

Image is a graph of uniform grid nodes

MRF Modeling For Stereo Matching
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⊖

Left image

Right image

Cost map (original)

Cost map (smoothed 

By MRF)

disparity of min-cost

disparity of min-cost

WTA vs. MRF
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Foreground / Background segmentation Denoising (0-255)

Semantic segmentation

(Boykov2006) (Szeliski2008)

(He2004)

Accuracy is most important!

Better cost functions and 

optimization techniques!

Multi-label MRF

High-order regularization

Computer Vision LOVES MRF
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Conditional Random Field (CRF)

◼ In classical Bayes model, prior p(x) is independent of the 

observation y. 𝑝(𝒙|𝒚) ∝ 𝑝(𝒚|𝒙)𝑝(𝒙)
◼ However, it is often helpful to update the prior probability 

based on the observation; the pairwise term depends on the y as 

well as x

𝐸(𝒙|𝒚) = 𝐸𝑑(𝒙, 𝒚) + 𝐸𝑠(𝒙, 𝒚) =

𝑝

𝑉𝑝 𝒙𝑝, 𝒚 +

𝑝,𝑞

𝑉𝑝,𝑞(𝒙𝑝, 𝒙𝑞 , 𝒚)
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Numerical Computation
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Numerical Concerns for Implementations of Deep 

Learning Algorithms

• Iterative search for best input is difficult

◼ Algorithms are often specified in terms of real numbers; real 

numbers cannot be implemented in a finite computer 

• Does the algorithm work when implemented with a finite number of bits?

◼ Do small changes in the input to a function cause large changes 

to an output? 

• Rounding errors, noise, measurement errors can cause large changes 

Example of Underflow Example of Overflow
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Poor Conditioning

◼Conditioning refers to how rapidly a function changes with 

respect to small changes in its inputs

◼We can evaluate the conditioning by a conditioning number

⚫ The sensitivity is an intrinsic property of a function, not of 

computational error

⚫ For example, condition number for 𝑓(𝒙) = 𝐴−1𝒙, where A is 

a positive semidefinite matrix, is

max
𝑖,𝑗

𝜆𝑖

𝜆𝑗
; where 𝜆𝑠 are eigenvalue of A
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Gradient-Based Optimization

• Objective function: the function we want to minimize

• May also call it criterion, cost function, loss function, error function

• 𝒙∗ = argmin𝑓(𝒙)
• The derivative of 𝑓(𝑥) is denoted as 𝑓′(𝑥) or 𝑑𝑓/𝑑𝑥

• The gradient descent is the technique to reduce 𝑓(𝑥) by moving 𝑥
in small steps with the opposite sign of the derivative

• Stationary points: local minima or maxima 𝑓′ 𝑥 = 0

Local minima and global minimumGradient descent
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Partial/Directional Derivatives for multiple inputs

𝜕𝑓

𝜕𝑥𝑖
𝑧 = 𝑓(𝒙) ∇𝒙𝑓 𝒙 =

𝜕𝑓

𝜕𝑥1
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑚
Partial Derivatives

https://en.wikipedia.org/wiki/Directional_derivative

◼ The directional derivatives in direction 𝑢 is the slope of the 

function 𝑓 in direction 𝑢

To find the “steepest” direction,

min
𝒖

𝑢𝑇∇𝑥𝑓 𝒙 = min
𝒖

𝒖 2 ∇𝑥𝑓 𝒙 2 cos 𝜃

≅ min
𝜃

cos 𝜃

∇𝑥𝑓(𝒙)𝒖

𝒙𝑡+1 = 𝒙𝑡 − 𝜖∇𝒙𝑓(𝒙
𝑡)

• Gradient descent for multiple inputs

• 𝜖 (learning rate) is fixed or adaptively 

selected (line search) 

Opposite direction
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Beyond the Gradient: Jacobian and Hessian Matrices

𝒇:ℝ𝑚 → ℝ𝑛 ∇𝒙𝑓 𝒙 =

𝜕𝑓1
𝜕𝑥1

, ⋯ ,
𝜕𝑓1
𝜕𝑥𝑚

⋮
𝜕𝑓𝑛
𝜕𝑥1

, ⋯ ,
𝜕𝑓𝑛
𝜕𝑥𝑚

Jacobian matrix

𝐻 𝑓 𝒙 𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝒙) Hessian matrix

𝐻 𝑓 𝒙 𝑖𝑗 = 𝐻 𝑓 𝒙 𝑗𝑖◼ When the function is continuous, 

◼ A real symmetric Hessian matrix has Eigendecomposition

⚫ When the Hessian is positive semidefinite, the point is local minimum

⚫ When the Hessian is negative semidefinite, the point is local maximum

⚫ Otherwise, the point is a saddle point
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◼ The second derivative in a specific direction represented by a 

unit vector 𝒅 is 𝒅𝑇𝐻𝒅

𝑓 𝒙 ≈ 𝑓 𝒙 0 + 𝒙 − 𝒙 0 𝑇
𝒈 +

1

2
𝒙 − 𝒙(0)

𝑇
𝐻(𝒙 − 𝒙(0))

• 𝒙 0 is the current point, 𝒈 is the gradient and H is the 

Hessian at 𝒙 0

𝑓 𝒙(𝟎) − 𝜖𝒈 ≈ 𝑓 𝒙 0 − 𝜖𝒈𝑇𝒈 +
1

2
𝜖2𝒈𝑇𝐻𝒈

Beyond the Gradient: Jacobian and Hessian Matrices

◼ When 𝒈𝑇𝐻𝒈 is positive, solving for the optimal learning rate 

that decreases the function is 

𝜖∗ =
𝑔𝑇𝑔

𝑔𝑇𝐻𝑔

◼ Then new point 𝒙 will be given by 𝒙(0) − 𝜖𝒈



Fundamentals of Media Processing, Deep Learning

Newton’s Method (Second-Order Algorithm)

◼ In Gradient descent, the step size must be small enough

◼ Newton’s method is based on using 1st-order or 2nd-order 

Tyler Expansion

𝑓 𝒙 ≈ 𝑓 𝑥 0 + 𝑥 − 𝑥 0 𝑇
𝑔 +

1

2
𝑥 − 𝑥(0)

𝑇
𝐻(𝑥 − 𝑥(0))

- The critical point (∇𝑓 𝒙∗ = 𝟎) is 𝒙∗ = 𝑥(0) − 𝑔−1𝑓 1𝑠𝑡 or 𝑥 0 − 𝐻−1𝑔(2𝑛𝑑)

• When f is a positive definite quadratic function, Newton’s method 

once to jump to the minimum of the function directly. 

• When f is not truly quadratic but can be locally approximated as a 

positive definite quadratic, Newton’s method consists of applying 

multiple jumping

• Jumping to the minimum of the approximation can reach the 

critical point much faster than gradient descent would.
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Example (For univariate function: 1st order case)
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Constrained Optimization

min
𝒙

𝑓 s.t. 𝑔𝑖 𝒙 = 0,

◼ Karush-Kuhn-Tucker (KKT) Multiplier (Generalization of the 

Lagrange Multipliers)

min
𝑥

max
𝜆𝑖

max
𝜇𝑖≥0

𝐿 𝑥, 𝜆𝑗 , 𝜇𝑗

= min
𝑥

max
𝜆𝑖

max
𝛼≥0

𝑓 𝑥 + σ𝜆𝑖𝑔𝑖 𝑥 + σ𝜇𝑖ℎ𝑖(𝑥)

equality constraint inequality constraint

ℎ𝑖 𝒙 ≤ 0

◼ Constraint optimization problem is generally written as

Generalized Lagrangian
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Karush-Kuhn-Tucker Condition

◼ KKT Conditions: For a point to be optimal, 

1. The gradient of the generalized Lagrangian is zero

2. All constraints on both x and the KKT multipliers are satisfied

3. The inequality constraints exhibit “complementary slackness”: 

𝛼⨀ℎ 𝑥 = 0
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Example: Linear Least Squares

𝑓 𝒙 =
1

2
𝐴𝒙 − 𝒃 2

2

∇𝒙𝑓 𝒙 = 𝐴𝑇 𝐴𝒙 − 𝒃 = 𝐴𝑇𝐴𝒙 − 𝐴𝑇𝒃

𝒙𝑛+1 ← 𝒙𝑛 − 𝜖(𝐴𝑇𝐴𝒙𝑛 − 𝐴𝑇𝒃) (Gradient Decent)

◼ If subjected to 𝒙𝑇𝒙 ≤ 𝟏

L 𝒙, 𝜆 = 𝑓 𝒙 − 𝜆(𝒙𝑇𝒙 − 1)min
𝑥,𝜆≥0

L 𝒙, 𝜆

∇𝒙𝐿 𝒙, 𝜆 = 𝐴𝑇𝐴𝒙 − 𝐴𝑇𝒃 + 2𝜆𝒙 = 0

∇𝜆𝐿 𝒙, 𝜆 = 𝒙𝑇𝒙 − 1

𝒙 = 𝐴𝑇𝐴 + 2𝜆𝐼 −1𝐴𝑇𝒃

◼ The magnitude of 𝜆 must obey the constraint:   

- Update 𝜆 (≥ 0) until ∇𝜆𝐿 𝒙, 𝜆 becomes zero 

◼ Consider an unconstrained problem of:
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https://satoshi-ikehata.github.io/mediaprocessing.html
Class material is available at


