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• Satoshi Ikehata, Assistant Proffessor (sikehata@nii.ac.jp)

• Research Field: 3D Computer Vision

• 3D Indoor modeling
• Photometric Stereo



An introduction to a broad 

range of topics in deep 

learning, covering 

mathematical and conceptual 

background, deep learning 

techniques used in industry, 

and research perspectives.

Chapter 1-9 (out of 20)

• Due to my background, I will 
mainly talk about “image”

• I will introduce some 
applications beyond this book



https://www.deeplearningbook.or
g/lecture_slides.html

Free copy of the book and useful 
materials are available at 
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Introduction

Deep Feedforward Networks
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https://satoshi-ikehata.github.io
Class material will be available at

This is 2018 version



Basic Mathematics:

Probability and Information Theory
(I will skip “Linear Algebra” due to the time constraint )



Why probability?

Most real problem is not deterministic.

Which is this 

picture about

Dog or Cat?



Three possible sources of uncertainty

⚫ Inherent stochasticity in the system

e.g., Randomly shuffled card

⚫ Incomplete observability

e.g., Monty Hall problem

⚫ Incomplete modeling

e.g., A robot that only sees the discretized space

⚫ A random variable is a variable that can take on different 

values randomly. e. g., 𝑥 ∈ x



Discrete case: Probability Mass Function

⚫ The domain of P must be the set of all possible states of x

• σ𝑥∈x𝑃 𝑥 = 1. We refer to this property as being normalized. Without this 

property, we could obtain probabilities greater than one by computing the 

probability of one of many events occurring

• ∀𝑥 ∈ x, 0 ≤ 𝑃 𝑥 ≤ 1.An impossible event has probability 0 and no state can be 

less probable than that. Likewise, an event that is guaranteed to happen has 

probability 1, and no state can have a greater chance of occurring

𝑃 𝑥

⚫ Example

• Dice : P(x)=1/6, x is an event where f(x)=1,2,3,4,5,6   



Continuous case: Probability Density Function

⚫ The domain of 𝑝 must be the set of all possible states of x

• ∀𝑥 ∈ x, 𝑝 𝑥 ≥ 0. Note that we do not require 𝑝 𝑥 ≤ 1

• ∫ 𝑝 𝑥 𝑑𝑥 = 1

• Does not give the probability of a specific state directly

e.g., p(0.0001)  + p(0.0002) +….. >= 100%!

𝑝 𝑥

⚫ Example

• What is the probability that randomly selected value within 

[0,1] is more than 0.5?



Marginal Probability

◼ The probability distribution over the subset

⚫ ∀𝑥 ∈ x, P 𝑥 = σ𝑦𝑃 𝑥, 𝑦 (Discrete)

⚫ 𝑝 𝑥 = ∫ 𝑝 𝑥, 𝑦 𝑑𝑦 (Continuous)

0.4

0.1

0.3

0.2

Tokyo

Outside Tokyo

FemaleMale

Q. How often students come from Tokyo?

Table: The statistics about the student



Conditional Probability

⚫ 𝑃 𝑦 𝑥 = 𝑃 𝑦, 𝑥 /𝑃(𝑥)

◼ The probability of an event, given that some other event has 

happened

⚫ 𝑃 𝑦, 𝑥 = 𝑃 𝑦 𝑥 𝑃(𝑥)

◼ Example: The boy and girl problem

Mr. Jones has two children. One is a girl. What is the probability 

that the other is a boy?

• Each child is either male or female.

• Each child has the same chance of being male as of being female.

• The sex of each child is independent of the sex of the other.



Conditional Probability

⚫ 𝑃 𝑦 : The probability that “The other is a boy” 

⚫ 𝑃 𝑥 : The probability that “One is a girl” 

⚫ 𝑃 𝑦|𝑥 : The probability that “The other is a boy” when “One is a girl” 

𝑃 𝑦 𝑥 =
𝑃 𝑦, 𝑥

𝑃 𝑥
=
2/4

3/4
=
2

3

⚫ 𝑃 𝑦, 𝑥 : The probability that “One is a girl, the other is a boy”

[Boy/Boy, Boy/Girl, Girl/Boy, Girl/Girl]



Expectation, Variance and Covariance

• Ε𝑥~(𝑜𝑟→)𝑃 𝑓(𝑥) = σ𝑥𝑃 𝑥 𝑓(𝑥)

• Ε𝑥~𝑝 𝑓(𝑥) = ∫𝑝 𝑥 𝑓 𝑥 𝑑𝑥

◼ The expectation of some function f(x) with respect to P(x) or p(x) is 

mean value that f takes on when x is drawn from P or p

◼ The variance gives how much the values of a function of a random variable x

vary as we sample different values of x from its probability distribution

• Var 𝑓(𝑥) = Ε 𝑓 𝑥 − Ε 𝑓 𝑥 2

◼ The covariance gives some sense of how much two values are linearly related 

to each other, as well as the scale of these variables:

• Cov 𝑓 𝑥 , 𝑔(𝑦) = Ε 𝑓 𝑥 − Ε 𝑓 𝑥 𝑔 𝑦 − Ε 𝑔 𝑦

• Cov 𝒙 𝑖,𝑗 = Cov 𝑥𝑖 , 𝑥𝑗 Covariance matrix for 𝑛 × 𝑛 matrix



Common Probability Distribution (1)

◼ Bernoulli distribution

◼ Gaussian (Normal) distribution

𝑃 1 = Φ 𝑃 0 = 1 − Φ 𝑃 𝑥 = 𝜙𝑥 1 − Φ 1−𝑥

𝒩 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

1

2𝜎2
𝑥 − 𝜇 2

The central limit theorem:

The sum of many independent 

random variables is approximately 

normally distributed



Common Probability Distribution (2)

◼ Multivariate normal distribution

𝑁 𝒙; 𝝁, Σ =
1

2𝜋 𝑛det(Σ)
exp −

1

2
𝒙 − 𝝁 𝑇Σ−1(𝒙 − 𝝁)

https://notesonml.wordpress.com/2015/06/30/chapter-14-anomaly-detection-part-2-

multivariate-gaussian-distribution/



Common Probability Distribution (3)

𝑝 𝑥; 𝜆 = 𝜆𝟏𝑥≥0exp(−𝜆𝑥)

𝟏𝑥≥0 assign zero to negative values of x

Laplace 𝑥; 𝜇, 𝛾 =
1

2𝜆
exp(−

𝑥 − 𝜇

𝛾
)

◼ Exponential distribution

◼ Laplace distribution



Mixtures of Distributions

𝑝 𝑥 =

𝑖

𝜙𝑖𝑁 𝑥|𝜇𝑖 , 𝜎𝑖
2

◼ Gaussian Mixture Model

◼ Empirical Distribution

𝑝 𝑥 =
1

𝑚
𝛿 𝑥 − 𝑥(𝑖)

𝜙𝑖: latent variable (weight of 

gaussian)  

⚫ GMM is a universal approximator of 

densities of a distribution

⚫ 𝛿 is a dirac delta function



Application of GMM in Computer Vision

Background subtraction by GMM

https://www.youtube.com/watch?v=KGal_NvwI7A



Useful Properties of Common Functions

◼ Logistic Sigmoid

◼ Softplus function

𝜎 𝑥 =
1

1 + exp(−𝑥)

𝜍 𝑥 = log 1 + exp(−𝑥)

⚫ Good to produce [0,1] 

random values

⚫ Good to prodce [0,∞] 

random values



Bayes’ Rule (from last class! )

𝑃 𝑥 𝑦 =
𝑃 𝑥 𝑃(𝑦|𝑥)

𝑃(𝑦)
=
𝑃 𝑥, 𝑦

𝑃(𝑦)

The entire output of a factory is produced on three machines. The three machines 

account for 20%, 30%, and 50% of the factory output. The fraction of defective 

items produced is 5% for the first machine; 3% for the second machine; and 1% for 

the third machine. If an item is chosen at random from the total output and is found 

to be defective, what is the probability that it was produced by the third machine?

Factory Problem

Posterior probability
Prior probability

likelihoodPrior probability



The entire output of a factory is produced on three machines. The three machines 

account for 20%, 30%, and 50% of the factory output. The fraction of defective 

items produced is 5% for the first machine; 3% for the second machine; and 1% for 

the third machine. If an item is chosen at random from the total output and is found 

to be defective, what is the probability that it was produced by the third machine?

𝑃 𝑋𝐴 = 0.2, 𝑃 𝑋𝐵 = 0.3, 𝑃 𝑋𝐶 = 0.5

𝑃 𝑌|𝑋𝐴 = 0.05, 𝑃 𝑌|𝑋𝐵 = 0.03, 𝑃 𝑌|𝑋𝐶 = 0.01

𝑃 Y = 𝑃 𝑌 𝑋𝐴 𝑃 𝑋𝐴 + 𝑃 𝑌 𝑋𝐵 𝑃(𝑋𝐵)+ 𝑃 𝑌 𝑋𝐶 𝑃(𝑋𝐶)

𝑃 𝑋𝐶|Y =
𝑃 𝑋𝐶 𝑃 𝑌 𝑋𝐶

𝑃 𝑌
= 5/24

Factory Problem



Information Theory



Information theory studies the quantification, storage, and communication of information. It was originally

proposed by Claude E. Shannon in 1948 to find fundamental limits on signal processing and communication
operations such as data compression, in a landmark paper entitled “A Mathematical Theory of

Communication”.

A key measure in information theory is entropy. Entropy quantifies the amount of uncertainty involved in the

value of a random variable or the outcome of a random process. Some other important measures in information

theory are mutual information, channel capacity, error exponents, and relative entropy.

The field is at the intersection of mathematics, statistics, computer science, physics, neurobiology, information

engineering, and electrical engineering. The theory has also found applications in other areas,

including statistical inference, natural language processing, cryptography, neurobiology, human vision, the

evolution and function of molecular codes (bioinformatics), model selection in statistics, thermal

physics, quantum computing, linguistics, plagiarism detection, pattern recognition, and anomaly detection.

Information Theory

https://en.wikipedia.org/wiki/Information_theory



Information Theory

◼ Self-information (for single outcome)

𝐼 𝑥 = − log 𝑃(𝑥)

In units of nats or bits: amount of 

information gained by observing an 

event of probability 1/e or 1/2

◼ Shanon entropy (amount of uncertainty in an entire probability 

distribution)

𝐻 𝑥 = 𝐸𝑥~𝑃 𝐼 𝑥 = 𝐸𝑥~𝑃 −log 𝑃 𝑥 = −𝐸𝑥~𝑃 log 𝑃 𝑥

⚫ Likely event has low information, less likely event has 

higher information

⚫Known as differential entropy for p(x)

For example, identifying the outcome of a fair coin flip (with two equally likely 

outcomes) provides less information (lower entropy) than specifying the outcome 
from a roll of a dice (with six equally likely outcomes). 



Example

𝐻 𝑥 = 𝐸𝑥~𝑃 𝐼 𝑥 = −

𝑖=1

𝑚

𝑝𝑖 log 𝑝𝑖

0 (Dirac delta), 174 (Gaussian), and 431 (uniform).

https://medium.com/swlh/shannon-entropy-in-the-context-of-machine-learning-and-ai-24aee2709e32



Kullback-Leibler (KL) divergence

𝐷𝐾𝐿(𝑃| 𝑄 = 𝐸𝑥~𝑃 log
𝑃 𝑥

𝑄 𝑥
= 𝐸𝑥~𝑃 log 𝑃 𝑥 − log𝑄(𝑥)

◼ The difference of two distributions (higher is different)

• KL divergence is positive or zero only when P and Q are the 

same distribution

• Often used for model fitting (e.g., fitting GMM (Q(x)) on P(x)

• Asymmetric measure (𝐷𝐾𝐿(𝑃| 𝑄 ≠ 𝐷𝐾𝐿(𝑄||𝑃))

Suppose we have a distribution 

𝑝(𝑥) and want to approximate it 

with 𝑞(𝑥):

𝐷𝐾𝐿(𝑃| 𝑄 ; p: high, q: high

𝐷𝐾𝐿(𝑄| 𝑃 ; p:low, q:low

minන𝑝(log 𝑝 𝑥 − log 𝑞(𝑥)) minන𝑞(log 𝑝 𝑥 − log 𝑞(𝑥))



Cross-entropy

• 𝐻 𝑃, 𝑄 = 𝐸𝑥~𝑃(− log𝑄(𝑥)) = 𝐻 𝑃 + 𝐷𝐾𝐿(𝑃| 𝑄

⚫ The average number of bits needed to identify an event drawn 

from the set, if a coding scheme is used that is optimized for an 

“artificial” probability distribution Q, not true distribution P

⚫ Minimizing the cross-entropy with respect to Q is equivalent to 

minimizing the KL divergence (with fixed P)

⚫ In classification problems, the commonly used cross entropy 

loss, measures the cross entropy between the empirical 

distribution of the labels (given the inputs) and the distribution 

predicted by the classifier 



Example
Strategy 1

Strategy 2

expected number of questions to 

guess the coin is 2.

expected number of questions to 

guess the coin is 1.75<2.

25% 25% 25% 25%

50% 25% 12.5%12.5%

Correct probability distribution (P(x))

Incorrect probability distribution (Q(x))

−𝐸𝑥~𝑃 log𝑄 𝑥 = −𝑃 log𝑄 =

Thus, cross entropy for a given strategy is simply the expected 

number of questions to guess the color under that strategy. For 

a given setup, the better the strategy is, the lower the cross 

entropy is. The lowest cross entropy is that of the optimal 

strategy, which is just the entropy defined above. 
https://www.quora.com/Whats-an-intuitive-way-to-think-of-cross-entropy



Markov Random Field (MRF)

◼ In computer vision algorithm, the most common graphical 

model may be Markov Random Filed (MRF),  whose log-

likelihood can be described using local neighborhood 

interaction (or penalty) terms. 

◼ MRF models can be defined over discrete variables, such as 

image labels (e.g., image restoration)

𝐸(𝒙, 𝒚) = 𝐸𝑑(𝒙, 𝒚) + 𝐸𝑝(𝒙)

𝐸𝑝 𝒙 = 

𝑖,𝑗 , 𝑘,𝑙 ∈𝒩

𝑉𝑖,𝑗,𝑘,𝑙(𝑓 𝑖, 𝑗 , 𝑗(𝑘, 𝑙))

𝒩4 and 𝒩8 neighborhood system

Likelihood term penalty term (pairwise smoothness)



INPUT

LABEL

Epipolar Line
𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 𝑙𝑎𝑏𝑒𝑙

STEREO as PIXEL-LABELING PROBLEM

LEFT RIGHT

Assign a disparity label to each pixel

STEREO MATCHING

LEFT TO RIGHT RIGHT TO LEFT



◼ Markov Random Field (MRF)

min
𝑙


𝑖

𝐶𝑖,𝑙 +

𝑖



𝑗∈𝑁(𝑖)

𝑆𝑙𝑖,𝑙𝑗

Unary Pairwise

Pairwise term for “smoothness prior”

𝐶𝑖,𝑙 = 𝐼𝑖+𝑙 − 𝐼𝑖 S𝑙𝑖,𝑙𝑗 = 𝑤𝑖𝑗 𝑙𝑖 − 𝑙𝑗

Left-right consistency Label smoothness

- Many computer vision problems were formulated on the “graph”

- MRF: the graph structure where each node is only affected by its “neighbor”

- Belief Propagation (BP), local optimum (Freeman2000, Sun2003)

Why MRF?: Convenient optimization methods are available 

- Graph Cuts (GC), global optimum (Kolmogorov and Zabih2001)

Image is a graph of uniform grid nodes

MRF Modeling For Stereo Matching



⊖

Left image

Right image

Cost map (original)

Cost map (smoothed 

By MRF)

disparity of min-cost

disparity of min-cost

WTA vs. MRF



Foreground / Background segmentation Denoising (0-255)

Semantic segmentation

(Boykov2006) (Szeliski2008)

(He2004)

Accuracy is most important!

Better cost functions and 

optimization techniques!

Multi-label MRF

High-order regularization

Computer Vision LOVES MRF



Conditional Random Field (CRF)

◼ In classical Bayes model, prior p(x) is independent of the 

observation y. 𝑝(𝒙|𝒚) ∝ 𝑝(𝒚|𝒙)𝑝(𝒙)
◼ However, it is often helpful to update the prior probability 

based on the observation; the pairwise term depends on the y as 

well as x

𝐸(𝒙|𝒚) = 𝐸𝑑(𝒙, 𝒚) + 𝐸𝑠(𝒙, 𝒚) =

𝑝

𝑉𝑝 𝒙𝑝, 𝒚 +

𝑝,𝑞

𝑉𝑝,𝑞(𝒙𝑝, 𝒙𝑞 , 𝒚)



Numerical Computation



Numerical Concerns for Implementations of Deep 

Learning Algorithms

• Iterative search for best input is difficult

◼ Algorithms are often specified in terms of real numbers; real 

numbers cannot be implemented in a finite computer 

• Does the algorithm work when implemented with a finite number of bits?

◼ Do small changes in the input to a function cause large changes 

to an output? 

• Rounding errors, noise, measurement errors can cause large changes 

Example of Underflow Example of Overflow



Poor Conditioning

◼Conditioning refers to how rapidly a function changes with 

respect to small changes in its inputs

◼We can evaluate the conditioning by a condition number

⚫ The sensitivity is an intrinsic property of a function, not of 

computational error

⚫ For example, condition number for 𝑓(𝒙) = 𝐴−1𝒙, where A is 

a positive semidefinite matrix, is

max
𝑖,𝑗

𝜆𝑖

𝜆𝑗
; where 𝜆𝑠 are eigenvalue of A

lim
𝜖→0

sup
𝛿𝑥 ≤𝜖

𝛿𝑓

𝛿𝑥
Condition number of a problem 𝑓



Gradient-Based Optimization

• Objective function: the function we want to minimize

• May also call it criterion, cost function, loss function, error function

• 𝒙∗ = argmin𝑓(𝒙)
• The derivative of 𝑓(𝑥) is denoted as 𝑓′(𝑥) or 𝑑𝑓/𝑑𝑥

• The gradient descent is the technique to reduce 𝑓(𝑥) by moving 𝑥
in small steps with the opposite sign of the derivative

• Stationary points: local minima or maxima 𝑓′ 𝑥 = 0

Local minima and global minimumGradient descent



Partial/Directional Derivatives for multiple inputs

𝜕𝑓

𝜕𝑥𝑖
𝑧 = 𝑓(𝒙) ∇𝒙𝑓 𝒙 =

𝜕𝑓

𝜕𝑥1
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑚
Partial Derivatives

https://en.wikipedia.org/wiki/Directional_derivative

◼ The directional derivatives in direction 𝑢 is the slope of the 

function 𝑓 in direction 𝑢

To find the “steepest” direction,

min
𝒖

𝒖𝑇∇𝑥𝑓 𝒙 = min
𝒖

𝒖 2 ∇𝑥𝑓 𝒙 2 cos 𝜃

≅ min
𝜃

cos 𝜃

∇𝑥𝑓(𝒙)𝒖

𝒙𝑡+1 = 𝒙𝑡 − 𝜖∇𝒙𝑓(𝒙
𝑡)

• Gradient descent for multiple inputs

• 𝜖 (learning rate) is fixed or adaptively 

selected (line search) 

Opposite direction



Beyond the Gradient: Jacobian and Hessian Matrices

𝒇:ℝ𝑚 → ℝ𝑛 ∇𝒙𝑓 𝒙 =

𝜕𝑓1
𝜕𝑥1

, ⋯ ,
𝜕𝑓1
𝜕𝑥𝑚

⋮
𝜕𝑓𝑛
𝜕𝑥1

, ⋯ ,
𝜕𝑓𝑛
𝜕𝑥𝑚

Jacobian matrix

𝐻 𝑓 𝒙 𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝒙) Hessian matrix

𝐻 𝑓 𝒙 𝑖𝑗 = 𝐻 𝑓 𝒙 𝑗𝑖◼ When the function is continuous, 

◼ A real symmetric Hessian matrix has Eigendecomposition

⚫ When the Hessian is positive semidefinite, the point is local minimum

⚫ When the Hessian is negative semidefinite, the point is local maximum

⚫ Otherwise, the point is a saddle point



◼ The second derivative in a specific direction represented by a 

unit vector 𝒅 is 𝒅𝑇𝐻𝒅

𝑓 𝒙 ≈ 𝑓 𝒙 0 + 𝒙 − 𝒙 0 𝑇
𝒈 +

1

2
𝒙 − 𝒙(0)

𝑇
𝐻(𝒙 − 𝒙(0))

• 𝒙 0 is the current point, 𝒈 is the gradient and H is the 

Hessian at 𝒙 0

𝑓 𝒙(𝟎) − 𝜖𝒈 ≈ 𝑓 𝒙 0 − 𝜖𝒈𝑇𝒈 +
1

2
𝜖2𝒈𝑇𝐻𝒈

Beyond the Gradient: Jacobian and Hessian Matrices

◼ When 𝒈𝑇𝐻𝒈 is positive, solving for the optimal learning rate 

that decreases the function is 

𝜖∗ =
𝑔𝑇𝑔

𝑔𝑇𝐻𝑔

◼ Then new point 𝒙 will be given by 𝒙(0) − 𝜖𝒈



Newton’s Method (Second-Order Algorithm)

◼ In Gradient descent, the step size must be small enough

◼ Newton’s method is based on using 1st-order or 2nd-order 

Tayler Expansion

𝑓 𝒙 ≈ 𝑓 𝑥 0 + 𝑥 − 𝑥 0 𝑇
𝑔 +

1

2
𝑥 − 𝑥(0)

𝑇
𝐻(𝑥 − 𝑥(0))

- The critical point (∇𝑓 𝒙∗ = 𝟎) is 𝒙∗ = 𝑥(0) − 𝑔−1𝑓 1𝑠𝑡 or 𝑥 0 − 𝐻−1𝑔(2𝑛𝑑)

• When f is a positive definite quadratic function, Newton’s method 

once to jump to the minimum of the function directly. 

• When f is not truly quadratic but can be locally approximated as a 

positive definite quadratic, Newton’s method consists of applying 

multiple jumping

• Jumping to the minimum of the approximation can reach the 

critical point much faster than gradient descent would.



Example (For univariate function: 1st order case)
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Machine Learning Basics (1)

• Machine Learning Tasks (E.g., Classification, Regression, translation…)
• Classification of Machine Learning Algorithms (supervised, semisupervised, unsupervised)
• Linear Regression (𝒚 = 𝝎𝑇𝒙)
• Capacity, Overfitting and Underfitting
• The No Free Lunch Theorem
• Regularization, Cross Validation (Training and Validation)
• Estimators, Bias and Variance 
• Maximum Likelihood Estimation (MLE) 
• Bayesian Statistics (↔ frequent statistics)
• Maximum A Posteriori (MAP) Estimation
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Machine Learning Basics (2)

• Supervised Learning (Support Vector Machine, Decision Tree)
• Unsupervised Learning (Principle Component Analysis, k-means)
• Stochastic Gradient Descent (SGD) Algorithm
• Curse of Dimensionality
• Local Constancy Smoothness Regularization
• Manifold Learning

Example of K-means clustering



Contact: sikehata@nii.ac.jp

https://satoshi-ikehata.github.io

Course Website (will be available soon!)


