Fundamentals of Media Processing （Machine Learning Part）

```
Lecturer:
佐藤 真一 (Prof. SATO Shinichi)
池畑 諭(Prof. IKEHATA Satoshi) 10/27, 11/10, 11/17, 11/21, 12/1, 12/8
山岸 順一 (Prof. Junichi Yamagishi)
児玉 和也 (Prof. KODAMA Kazuya)
孟 洋 (Prof. MO Hiroshi)
```


About Me

- Satoshi Ikehata, Assistant Proffessor (sikehata@nii.ac.jp)
- Research Field: 3D Computer Vision
- 3D Indoor modeling
- Photometric Stereo

Chapter 1-9 (out of 20)

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

- Due to my background, I will mainly talk about "image"
- I will introduce some applications beyond this book

Deep Learning

An MIT Press book in preparation

Ian Goodfellow, Yoshua Bengio and Aaron Courville

Book Exercises External Links

Lectures

We plan to offer lecture slides accompanying all chapters of this book. We currently offer slides for only some chapters. If you are a course instructor and have your own lecture slides that are relevant, feel free to contact us if you would like to have your slides linked or mirrored from this site.

1. Introduction

- Presentation of Chapter 1, based on figures from the book [.key] [.pdf]
- Video of lecture by Ian and discussion of Chapter 1 at a reading group in San Francisco organized by Alena Kruchkova

2. Linear Algebra [.key][_pdf]
3. Probability and Information Theory [.key][_pdf]
4. Numerical Computation [.key] [.pdf] [youtube]
5. Machine Learning Basics [.key] [.pdf]
6. Deep Feedforward Networks [.key] [.pdf]

- Video (.flv) of a presentation by Ian and a group discussion at a reading group at Google organized by Chintan Kaur.

7. Regularization for Deep Learning [.pdf] [.key]
8. Optimization for Training Deep Models

- Gradient Descent and Structure of Neural Network Cost Functions [.key] [.pdf] These slides describe how gradient descent behaves on different kinds of cost function surfaces. Intuition for the structure of the cost function can be built by examining a second-order Taylor series approximation of the cost function. This quadratic function can give rise to issues such as poor conditioning and saddle points. Visualization of neural network cost functions shows how these and some other geometric features of neural

Schedule

| $10 / 27$ (Today) | Introduction Chap. 1 | |
| :--- | :--- | :--- | :--- |
| | probability, information theory, numerical computation | Chap. 2,3,4 |

Class material will be available at https://satoshi-ikehata.github.io

This is 2018 version
Fundamentals of Media Processing (Deep Learning Part)
Fall 2018, 13:00 to 14:30
Instructor: Satoshi Ikehata

Textbook

"Deep Learning" by Ian Goodfellow. The book is available for free online or available for purchase.
Syllabus

Class Date	Topic	Slides
Tue, Oct. 16	Introduction	pdf. pptx
Basic of Machine Learning		
Tue, Oct. 23	Basic mathematics (1) (Linear algebra, probability, numerical computation	pdf
Tue, Oct. 30	Basic mathematics (2) (Linear algebra, probability, numerical computation	pdf
Tue, Nov. 6	Machine Learning Basics (1)	pdf
Tue, Nov. 13	Machine Learning Basics (2)	pdf
Basic of Deep Learning		
Tue, Nov. 20	Deep Feedforward Networks	pdf
Tue, Nov. 27	Regularization and Deep Learning	pdf
Tue, Dec. 4	Optimization for Training Deep Models	pdf
CNN and its Application		
Tue, Dec. 11	Convolutional Neural Networks and Its Application (1)	pdf
Tue, Dec. 18	Convolutional Neural Networks and Its Application (2)	pdf

Comments. auestions to >Satoshi Ikeahta (sikehata a nii.ac.iv)

Basic Mathematics: Probability and Information Theory
(I will skip "Linear Algebra" due to the time constraint)

Why probability?

Most real problem is not deterministic.

Which is this picture about Dog or Cat?

Three possible sources of uncertainty

- Inherent stochasticity in the system
e.g., Randomly shuffled card
- Incomplete observability
e.g., Monty Hall problem
- Incomplete modeling

e.g., A robot that only sees the discretized space
- A random variable is a variable that can take on different values randomly. e.g., $x \in \mathrm{x}$

Discrete case: Probability Mass Function

$P(x)$

- The domain of P must be the set of all possible states of x
- $\forall x \in \mathrm{x}, 0 \leq P(x) \leq 1$. An impossible event has probability 0 and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1 , and no state can have a greater chance of occurring
- $\quad \sum_{x \in \mathrm{x}} P(x)=1$. We refer to this property as being normalized. Without this property, we could obtain probabilities greater than one by computing the probability of one of many events occurring
- Example
- Dice : $\mathrm{P}(x)=1 / 6, x$ is an event where $\mathrm{f}(x)=1,2,3,4,5,6$

Continuous case: Probability Density Function

$p(x)$

- The domain of p must be the set of all possible states of x
- $\forall x \in \mathrm{x}, p(x) \geq 0$. Note that we do not require $p(x) \leq 1$
- $\int p(x) d x=1$
- Does not give the probability of a specific state directly

$$
\text { e.g., } p(0.0001)+p(0.0002)+\ldots . .>=100 \% \text { ! }
$$

- Example
- What is the probability that randomly selected value within $[0,1]$ is more than 0.5 ?

Marginal Probability

- The probability distribution over the subset
- $\forall x \in \mathrm{x}, \mathrm{P}(x)=\sum_{y} P(x, y)$ (Discrete)
- $p(x)=\int p(x, y) d y$ (Continuous)

Table: The statistics about the student

	Male	Female
Tokyo	0.4	0.3
Outside Tokyo	0.1	0.2

Q. How often students come from Tokyo?

Conditional Probability

- The probability of an event, given that some other event has happened
- $P(y \mid x)=P(y, x) / P(x)$
- $P(y, x)=P(y \mid x) P(x)$

■ Example: The boy and girl problem
Mr. Jones has two children. One is a girl. What is the probability that the other is a boy?

- Each child is either male or female.
- Each child has the same chance of being male as of being female.
- The sex of each child is independent of the sex of the other.

Conditional Probability

[Boy/Boy, Boy/Girl, Girl/Boy, Girl/Girl]

- $P(y)$: The probability that "The other is a boy"
- $P(x)$: The probability that "One is a girl"
- $P(y \mid x)$: The probability that "The other is a boy" when "One is a girl"
- $P(y, x)$: The probability that "One is a girl, the other is a boy"

$$
P(y \mid x)=\frac{P(y, x)}{P(x)}=\frac{2 / 4}{3 / 4}=\frac{2}{3}
$$

Expectation, Variance and Covariance

- The expectation of some function $\mathrm{f}(x)$ with respect to $\mathrm{P}(x)$ or $\mathrm{p}(x)$ is mean value that f takes on when x is drawn from P or p
- $\mathrm{E}_{x \sim(o r \rightarrow) P}[f(x)]=\sum_{x} P(x) f(x)$
- $\mathrm{E}_{x \sim p}[f(x)]=\int p(x) f(x) d x$
- The variance gives how much the values of a function of a random variable x vary as we sample different values of x from its probability distribution
- $\operatorname{Var}[f(x)]=\mathrm{E}\left[(f(x)-\mathrm{E}[f(x)])^{2}\right]$
- The covariance gives some sense of how much two values are linearly related to each other, as well as the scale of these variables:
- $\operatorname{Cov}[f(x), g(y)]=\mathrm{E}[(f(x)-\mathrm{E}[f(x)])(g(y)-\mathrm{E}[g(y)])]$
- $\operatorname{Cov}(\boldsymbol{x})_{i, j}=\operatorname{Cov}\left(x_{i}, x_{j}\right) \quad$ Covariance matrix for $n \times n$ matrix

Common Probability Distribution (1)

■ Bernoulli distribution

$$
P(1)=\Phi \quad P(0)=1-\Phi \quad P(x)=\phi^{x}(1-\Phi)^{1-x}
$$

■ Gaussian (Normal) distribution

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\sqrt{\frac{1}{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

The central limit theorem:

The sum of many independent random variables is approximately normally distributed

Common Probability Distribution (2)

■ Multivariate normal distribution

$$
\boldsymbol{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \Sigma)=\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \sum^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

https://notesonml.wordpress.com/2015/06/30/chapter-14-anomaly-detection-part-2-multivariate-gaussian-distribution/

Common Probability Distribution (3)

■ Exponential distribution

$$
p(x ; \lambda)=\lambda \mathbf{1}_{x \geq 0} \exp (-\lambda x)
$$

$\mathbf{1}_{x \geq 0}$ assign zero to negative values of x

- Laplace distribution

Laplace $(x ; \mu, \gamma)=\frac{1}{2 \lambda} \exp \left(-\frac{|x-\mu|}{\gamma}\right)$

Mixtures of Distributions

- Empirical Distribution

$$
p(x)=\frac{1}{m} \sum \delta\left(x-x^{(i)}\right)
$$

- δ is a dirac delta function

■ Gaussian Mixture Model

$$
p(x)=\sum_{i} \phi_{i} N\left(x \mid \mu_{i}, \sigma_{i}^{2}\right)
$$

ϕ_{i} : latent variable (weight of gaussian)

- GMM is a universal approximator of densities of a distribution

Application of GMM in Computer Vision

Background subtraction by GMM
https://www.youtube.com/watch?v=KGal_NvwI7A

Useful Properties of Common Functions

■ Logistic Sigmoid

$$
\sigma(x)=\frac{1}{1+\exp (-x)}
$$

- Good to produce [0,1] random values

Figure 3.3: The logistic sigmoid function.

- Softplus function $\varsigma(x)=\log (1+\exp (-x))$
- Good to prodce $[0, \infty$] random values

Figure 3.4: The softplus function.

Bayes' Rule (from last class!)

$$
\begin{gathered}
\text { Prior probability likelihood } \\
P(x \mid y)=\frac{P(x) P(y \mid x)}{P(y)}=\frac{P(x, y)}{P(y)}
\end{gathered}
$$

Factory Problem
The entire output of a factory is produced on three machines. The three machines account for $20 \%, 30 \%$, and 50% of the factory output. The fraction of defective items produced is 5\% for the first machine; 3% for the second machine; and 1% for the third machine. If an item is chosen at random from the total output and is found to be defective, what is the probability that it was produced by the third machine?

Factory Problem

The entire output of a factory is produced on three machines. The three machines account for $20 \%, 30 \%$, and 50% of the factory output. The fraction of defective items produced is 5% for the first machine; 3% for the second machine; and 1% for the third machine. If an item is chosen at random from the total output and is found to be defective, what is the probability that it was produced by the third machine?

$$
\begin{aligned}
& P\left(X_{A}\right)=0.2, P\left(X_{B}\right)=0.3, P\left(X_{C}\right)=0.5 \\
& P\left(Y \mid X_{A}\right)=0.05, P\left(Y \mid X_{B}\right)=0.03, P\left(Y \mid X_{C}\right)=0.01 \\
& P(\mathrm{Y})=P\left(Y \mid X_{A}\right) P\left(X_{A}\right)+P\left(Y \mid X_{B}\right) P\left(X_{B}\right)+P\left(Y \mid X_{C}\right) P\left(X_{C}\right) \\
& P\left(X_{C} \mid \mathrm{Y}\right)=\frac{P\left(X_{C}\right) P\left(Y \mid X_{C}\right)}{P(Y)}=5 / 24
\end{aligned}
$$

Information Theory

Information Theory

Information theory studies the quantification, storage, and communication of information. It was originally proposed by Claude E. Shannon in 1948 to find fundamental limits on signal processing and communication operations such as data compression, in a landmark paper entitled "A Mathematical Theory of Communication".

A key measure in information theory is entropy. Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process. Some other important measures in information theory are mutual information, channel capacity, error exponents, and relative entropy.

The field is at the intersection of mathematics, statistics, computer science, physics, neurobiology, information engineering, and electrical engineering. The theory has also found applications in other areas, including statistical inference, natural language processing, cryptography, neurobiology, human vision, the evolution and function of molecular codes (bioinformatics), model selection in statistics, thermal physics, quantum computing, linguistics, plagiarism detection, pattern recognition, and anomaly detection.

Information Theory

■ Self-information (for single outcome)

- Likely event has low information, less likely event has higher information

$$
I(x)=-\log P(x)
$$

In units of nats or bits: amount of information gained by observing an event of probability $1 / \mathrm{e}$ or $1 / 2$

For example, identifying the outcome of a fair coin flip (with two equally likely outcomes) provides less information (lower entropy) than specifying the outcome from a roll of a dice (with six equally likely outcomes).
■ Shanon entropy (amount of uncertainty in an entire probability distribution)

$$
H(x)=E_{x \sim P}[I(x)]=E_{x \sim P}[-\log P(x)]=-E_{x \sim P}[\log P(x)]
$$

- Known as differential entropy for $\mathrm{p}(\mathrm{x})$

Example

$$
H(x)=E_{x \sim P}[I(x)]=-\sum_{i=1}^{m} p_{i} \log p_{i}
$$

0 (Dirac delta), 174 (Gaussian), and 431 (uniform).
https://medium.com/swlh/shannon-entropy-in-the-context-of-machine-learning-and-ai-24aee2709e32

Kullback-Leibler (KL) divergence

$$
D_{K L}(P \| Q)=E_{x \sim P}\left[\log \frac{P(x)}{Q(x)}\right]=E_{x \sim P}[\log P(x)-\log Q(x)]
$$

- The difference of two distributions (higher is different)
- KL divergence is positive or zero only when P and Q are the same distribution
- Often used for model fitting (e.g., fitting GMM $(\mathrm{Q}(\mathrm{x}))$ on $\mathrm{P}(\mathrm{x})$
- Asymmetric measure $\left(D_{K L}(P \| Q) \neq D_{K L}(Q \| P)\right)$

Suppose we have a distribution $p(x)$ and want to approximate it with $q(x)$:
$D_{K L}(P \| Q) ; p$ high, q : high $D_{K L}(Q \| P)$; p :low, q :low

$$
\min \int p(\log p(x)-\log q(x)) \text { Figure } 3.6 \min \int q(\log p(x)-\log q(x))
$$

Cross-entropy

- $H(P, Q)=E_{x \sim P}(-\log Q(x))=H(P)+D_{K L}(P \| Q)$
- The average number of bits needed to identify an event drawn from the set, if a coding scheme is used that is optimized for an "artificial" probability distribution Q , not true distribution P
- Minimizing the cross-entropy with respect to Q is equivalent to minimizing the KL divergence (with fixed P)
- In classification problems, the commonly used cross entropy loss, measures the cross entropy between the empirical distribution of the labels (given the inputs) and the distribution predicted by the classifier

Example

Correct probability distribution $(\mathrm{P}(\mathrm{x})$)

Incorrect probability distribution $(\mathrm{Q}(\mathrm{x})$)

$$
\begin{gathered}
25 \% \quad 25 \% \quad 25 \% \quad 25 \% \\
-E_{x \sim P} \log Q(x)=-\sum P \log Q=
\end{gathered}
$$

Thus, cross entropy for a given strategy is simply the expected number of questions to guess the color under that strategy. For a given setup, the better the strategy is, the lower the cross entropy is. The lowest cross entropy is that of the optimal strategy, which is just the entropy defined above.

Strategy 1

expected number of questions to guess the coin is 2 .

Strategy 2

expected number of questions to guess the coin is $1.75<2$.

Markov Random Field (MRF)

- In computer vision algorithm, the most common graphical model may be Markov Random Filed (MRF), whose loglikelihood can be described using local neighborhood interaction (or penalty) terms.
- MRF models can be defined over discrete variables, such as image labels (e.g., image restoration)

Likelihood term penalty term (pairwise smoothness)

$$
E(\boldsymbol{x}, \boldsymbol{y})=E_{d}(\boldsymbol{x}, \boldsymbol{y})+E_{p}(\boldsymbol{x})
$$

$$
E_{p}(\boldsymbol{x})=\sum_{\{(i, j),(k, l)\} \in \mathcal{N}} V_{i, j, j, l}(f(i, j), j(k, l))
$$

\mathcal{N}_{4} and \mathcal{N}_{8} neighborhood system

STEREO MATCHING

STEREO as PIXEL-LABELING PROBLEM

Assign a disparity label to each pixel

MRF Modeling For Stereo Matching

- Markov Random Field (MRF)

- Many computer vision problems were formulated on the "graph"
- MRF: the graph structure where each node is only affected by its "neighbor"

Pairwise term for "smoothness prior"

Image is a graph of uniform grid nodes

$$
\begin{gathered}
\min _{l} \sum_{i} C_{i, l}+\sum_{i} \sum_{j \in N(i)} S_{l_{i}, l_{j}} \\
C_{i, l}=\left\|I_{i+l}-I_{i}\right\| \\
S_{l_{i}, l_{j}}=w_{i j}\left\|l_{i}-l_{j}\right\|
\end{gathered}
$$

Left-right consistency

Why MRF?: Convenient optimization methods are available

- Belief Propagation (BP), local optimum (Freeman2000, Sun2003)
- Graph Cuts (GC), global optimum (Kolmogorov and Zabih2001)

WTA vs. MRF

Computer Vision LOVES MRF

Foreground / Background segmentation
(Boykov2006)

Semantic segmentation
(He2004)

Denoising (0-255)
(Szeliski2008)

Accuracy is most important! Better cost functions and optimization techniques!

Multi-label MRF
High-order regularization

Conditional Random Field (CRF)

■ In classical Bayes model, prior $\mathrm{p}(\mathrm{x})$ is independent of the observation y. $p(\boldsymbol{x} \mid \boldsymbol{y}) \propto p(\boldsymbol{y} \mid \boldsymbol{x}) p(\boldsymbol{x})$

- However, it is often helpful to update the prior probability based on the observation; the pairwise term depends on the y as well as x

$$
E(\boldsymbol{x} \mid \boldsymbol{y})=E_{d}(\boldsymbol{x}, \boldsymbol{y})+E_{s}(\boldsymbol{x}, \boldsymbol{y})=\sum_{p} V_{p}\left(\boldsymbol{x}_{p}, \boldsymbol{y}\right)+\sum_{p, q} V_{p, q}\left(\boldsymbol{x}_{p}, \boldsymbol{x}_{q}, \boldsymbol{y}\right)
$$

Numerical Computation

Numerical Concerns for Implementations of Deep Learning Algorithms

- Algorithms are often specified in terms of real numbers; real numbers cannot be implemented in a finite computer
- Does the algorithm work when implemented with a finite number of bits?
- Do small changes in the input to a function cause large changes to an output?
- Rounding errors, noise, measurement errors can cause large changes
- Iterative search for best input is difficult

```
>> 1.0e100*(1.1/1.0e100+2.2/1.0e100)
ans =
    3.3000
>>1.0e1000*(1.1/1.0e1000+2.2/1.0e1000)
ans =
NaN Example of Underflow
```


Poor Conditioning

■ Conditioning refers to how rapidly a function changes with respect to small changes in its inputs

- We can evaluate the conditioning by a condition number
- The sensitivity is an intrinsic property of a function, not of computational error
- For example, condition number for $f(\boldsymbol{x})=A^{-1} \boldsymbol{x}$, where A is a positive semidefinite matrix, is

$$
\begin{aligned}
& \max _{i, j}\left|\frac{\lambda_{i}}{\lambda_{j}}\right| ; \text { where } \lambda_{s} \text { are eigenvalue of A } \\
& \lim _{\epsilon \rightarrow 0} \sup _{\|\delta x\| \leq \epsilon} \frac{\|\delta f\|}{\|\delta x\|} \quad \text { Condition number of a problem } f
\end{aligned}
$$

Gradient-Based Optimization

- Objective function: the function we want to minimize
- May also call it criterion, cost function, loss function, error function
- $\boldsymbol{x}^{*}=\operatorname{argmin} f(\boldsymbol{x})$
- The derivative of $f(x)$ is denoted as $f^{\prime}(x)$ or $d f / d x$
- The gradient descent is the technique to reduce $f(x)$ by moving x in small steps with the opposite sign of the derivative
- Stationary points: local minima or maxima $f^{\prime}(x)=0$

Gradient descent

Local minima and global minimum

Partial/Directional Derivatives for multiple inputs

$$
z=f(\boldsymbol{x}) \quad \frac{\partial f}{\partial x_{i}} \quad \nabla_{x} f(\boldsymbol{x})=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{m}}\right] \text { Partial Derivatives }
$$

- The directional derivatives in direction u is the slope of the function f in direction u

https://en.wikipedia.org/wiki/Directional_derivative

To find the "steepest" direction,

$$
\begin{aligned}
& \min _{\boldsymbol{u}} \boldsymbol{u}^{T} \nabla_{x} f(\boldsymbol{x})=\min _{\boldsymbol{u}}\|\boldsymbol{u}\|_{2}\left\|\nabla_{x} f(\boldsymbol{x})\right\|_{2} \cos \theta \\
& \cong \min _{\theta} \cos \theta
\end{aligned}
$$

$$
\boldsymbol{u} \stackrel{\text { Opposite direction }}{\longleftrightarrow} \nabla_{x} f(\boldsymbol{x})
$$

$$
\boldsymbol{x}^{t+1}=\boldsymbol{x}^{t}-\epsilon \nabla_{x} f\left(\boldsymbol{x}^{t}\right)
$$

- Gradient descent for multiple inputs
- ϵ (learning rate) is fixed or adaptively selected (line search)

Beyond the Gradient: Jacobian and Hessian Matrices

$$
\begin{array}{r}
\boldsymbol{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \nabla_{\boldsymbol{x}} f(\boldsymbol{x})=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}}, \cdots, \frac{\partial f_{1}}{\partial x_{m}} \\
\vdots \\
\frac{\partial f_{n}}{\partial x_{1}}, \cdots, \frac{\partial f_{n}}{\partial x_{m}}
\end{array}\right] \quad \text { Jacobian matrix } \\
H(f)(\boldsymbol{x})_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\boldsymbol{x}) \quad \text { Hessian matrix }
\end{array}
$$

■ When the function is continuous, $H(f)(\boldsymbol{x})_{i j}=H(f)(\boldsymbol{x})_{j i}$

- A real symmetric Hessian matrix has Eigendecomposition
- When the Hessian is positive semidefinite, the point is local minimum
- When the Hessian is negative semidefinite, the point is local maximum
- Otherwise, the point is a saddle point

Beyond the Gradient: Jacobian and Hessian Matrices

- The second derivative in a specific direction represented by a unit vector \boldsymbol{d} is $\boldsymbol{d}^{T} H \boldsymbol{d}$

$$
f(x) \approx f\left(x^{(0)}\right)+\left(x-x^{(0)}\right)^{T} g+\frac{1}{2}\left(x-x^{(0)}\right)^{T} H\left(x-x^{(0)}\right)
$$

- $\boldsymbol{x}^{(0)}$ is the current point, \boldsymbol{g} is the gradient and H is the Hessian at $\boldsymbol{x}^{(0)}$
\square Then new point \boldsymbol{x} will be given by $\boldsymbol{x}^{(0)}-\epsilon \boldsymbol{g}$

$$
f\left(\boldsymbol{x}^{(0)}-\epsilon \boldsymbol{g}\right) \approx f\left(\boldsymbol{x}^{(0)}\right)-\epsilon \boldsymbol{g}^{T} \boldsymbol{g}+\frac{1}{2} \epsilon^{2} \boldsymbol{g}^{T} H \boldsymbol{g}
$$

- When $\boldsymbol{g}^{T} H \boldsymbol{g}$ is positive, solving for the optimal learning rate that decreases the function is

$$
\epsilon^{*}=\frac{g^{T} g}{g^{T} H g}
$$

Newton's Method (Second-Order Algorithm)

■ In Gradient descent, the step size must be small enough

- Newton's method is based on using $1^{\text {st }}$-order or $2^{\text {nd }}-$ order Tayler Expansion

$$
f(\boldsymbol{x}) \approx f\left(x^{(0)}\right)+\left(x-x^{(0)}\right)^{T} g+\frac{1}{2}\left(x-x^{(0)}\right)^{T} H\left(x-x^{(0)}\right)
$$

- The critical point $\left(\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}\right)$ is $\boldsymbol{x}^{*}=x^{(0)}-g^{-1} f\left(1^{s t}\right)$ or $x^{(0)}-H^{-1} g\left(2^{\text {nd }}\right)$
- When f is a positive definite quadratic function, Newton's method once to jump to the minimum of the function directly.
- When f is not truly quadratic but can be locally approximated as a positive definite quadratic, Newton's method consists of applying multiple jumping
- Jumping to the minimum of the approximation can reach the critical point much faster than gradient descent would.

Example (For univariate function: $1^{\text {st }}$ order case)

11/10

Machine Learning Basics (1)

- Machine Learning Tasks (E.g., Classification, Regression, translation...)
- Classification of Machine Learning Algorithms (supervised, semisupervised, unsupervised)
- Linear Regression $\left(\boldsymbol{y}=\boldsymbol{\omega}^{T} \boldsymbol{x}\right)$
- Capacity, Overfitting and Underfitting
- The No Free Lunch Theorem
- Regularization, Cross Validation (Training and Validation)
- Estimators, Bias and Variance
- Maximum Likelihood Estimation (MLE)
- Bayesian Statistics (\leftrightarrow frequent statistics)
- Maximum A Posteriori (MAP) Estimation

Bayesian versus Frequentism

Basis of method	Bayes Theorem \rightarrow Posterior probability distribution	Uses pdf for data, for fixed parameters
Meaning of probability	Degree of belief	Frequentist definition
Prob of parameters?	Yes	Anathema
Needs prior?	Yes	No
Choice of interval?	Yes	Yes (except F+C)
Data considered	Only data you have	$\begin{aligned} & \text { _..+ other possible } \\ & \text { data } \end{aligned}$
Likelihood principle?	Yes	No

11/10

Machine Learning Basics (2)

- Supervised Learning (Support Vector Machine, Decision Tree)
- Unsupervised Learning (Principle Component Analysis, k-means)
- Stochastic Gradient Descent (SGD) Algorithm
- Curse of Dimensionality
- Local Constancy Smoothness Regularization
- Manifold Learning

Example of K-means clustering

Course Website (will be available soon!)

https://satoshi-ikehata.github.io
Contact: sikehata@nii.ac.jp

